Author: Sekutowicz, J.K.
Paper Title Page
MOPB103 Vertical Electro-Polishing at DESY of a 1.3 GHz Gun Cavity for CW Application 399
 
  • N. Steinhau-Kühl, R. Bandelmann, D. Kostin, A. Matheisen, M. Schmökel, J.K. Sekutowicz
    DESY, Hamburg, Germany
 
  Superconducting gun cavities for cw operation in accelerators are under study. In 2003 a three-and-a-half cell gun cavity was chemically treated with buffered chemical polishing and tested successfully in a collaboration between Helmholtz-Zentrum Dresden-Rossendorf and DESY. For several years a 1.3-GHz 1.6-cell resonator has been under study, which has been built and tested at DESY and elsewhere. For further studies and optimization the gun cavity needed to be electro-polished, which was conducted at DESY for the first time using vertical electro-polishing. The technical set-up for the vertical electro-polishing and high pressure rinsing as well as the processing parameters applied and the adaptation of the existing infrastructure to the 1.6-cell geometry at DESY are presented.  
Export • reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml)  
 
THAA02 SRF Gun Development Overview 994
 
  • J.K. Sekutowicz
    DESY, Hamburg, Germany
 
  The most demanding component of a continuous wave (cw) injector is cw operating RF-gun, delivering highly populated low emittance bunches. RF-guns, both working at room temperature and superconducting, when they generate highly populated low emittance bunches have to be operated at high accelerating gradients to suppress space charge effects diluting emittance. Superconducting RF-guns are technically superior to the normal conducting devices because they dissipate orders of magnitude less power when operating at very high gradients in cw mode. In this contribution progress since 2013 in the R&D programs, designing and operation of the SRF-injectors at KEK, HZB, HZDR, PKU and DESY will be discussed.  
slides icon Slides THAA02 [6.107 MB]  
Export • reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml)  
 
THPB056 SRF Gun Cavity R&D at DESY 1231
 
  • D. Kostin, C. Albrecht, A. Brinkmann, Th. Buettner, J. Eschke, T. Feldmann, A. Gössel, D. Klinke, A. Matheisen, W.-D. Möller, D. Reschke, M. Schmökel, J.K. Sekutowicz, W. Singer, X. Singer, N. Steinhau-Kühl, J. Ziegler, B. van der Horst
    DESY, Hamburg, Germany
  • M. Barlak, J.A. Lorkiewicz, R. Nietubyć
    NCBJ, Świerk/Otwock, Poland
 
  SRF Gun Cavity is an ongoing accelerator R&D project at DESY, being developed since several years. Currently several SRF Gun cavity prototypes were simulated, built and tested in our Lab and elsewhere. Lately the 1.6 cells Pb thin film cathode niobium cavity was tested in a vertical cryostat with a different cathode plug configurations. Cathode plug design was improved, as well as SRF Gun Cavity cleaning procedures. Results of the last cavity performance tests are presented and discussed.  
poster icon Poster THPB056 [1.257 MB]  
Export • reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml)  
 
THPB089 HOM Coupler Performance in CW Regime in Horizontal and Vertical Tests 1349
 
  • N. Solyak, M.H. Awida, A. Grassellino, C.J. Grimm, A. Hocker, J.P. Holzbauer, T.N. Khabiboulline, O.S. Melnychuk, A.M. Rowe, D.A. Sergatskov, N. Solyak
    Fermilab, Batavia, Illinois, USA
  • J.K. Sekutowicz
    DESY, Hamburg, Germany
 
  Power dissipation in HOM coupler antenna can limit cavity gradient in cw operation. XFEL design of HOM coupler, feedthrough and thermal connection to 2K pipe was accepted for LCLS-II cavity based on simulation results. Recently a series of vertical and horizontal tests was done to prove design for cw operation. In vertical test was found no effect of HOM coupler heating on high-Q cavity performance. In horizontal cryostat HOM coupler was tested up-to 23MV/m in continuous wave mode. Result proves that XFEL HOM coupler meets LCLS-II specifications.  
Export • reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml)