Author: Reece, C.E.
Paper Title Page
MOBA07
Lessons Learned From Nitrogen Doping at JLab - Exploration of Surface Resistance and Quench Field Trade-Offs With Varied Interstitial Atom Diffusion of Niobium Cavity Surfaces  
 
  • A.D. Palczewski, G. Ciovati, P. Dhakal, R.L. Geng, C.E. Reece, H. Tian
    JLab, Newport News, Virginia, USA
 
  Funding: This work is supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under contract DE-AC05-06OR23177 and by the LCLS-II Project under DE-AC02-76SF00515.
Interstitial diffusion of atomic species into the surface of niobium has been found to yield significantly reduced srf surface resistance and lowered quench fields. This talk summarizes systematic efforts to explore the trade-offs of these phenomena with a goal of learning how to maximize Q0 in the 30 MV/m regime. The talk also summarizes N-doped cavity progress at JLab for LCLS-II.
 
slides icon Slides MOBA07 [3.052 MB]  
Export • reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml)  
 
MOPB033 LCLS-II SRF Cavity Processing Protocol Development and Baseline Cavity Performance Demonstration 159
 
  • M. Liepe, P. Bishop, H. Conklin, R.G. Eichhorn, F. Furuta, G.M. Ge, D. Gonnella, T. Gruber, D.L. Hall, G.H. Hoffstaetter, J.J. Kaufman, G. Kulina, J.T. Maniscalco, T.I. O'Connell, P. Quigley, D.M. Sabol, J. Sears, V. Veshcherevich
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • M. Checchin, A.C. Crawford, A. Grassellino, C.J. Grimm, A. Hocker, M. Martinello, O.S. Melnychuk, J.P. Ozelis, A. Romanenko, A.M. Rowe, D.A. Sergatskov, W.M. Soyars, R.P. Stanek, G. Wu
    Fermilab, Batavia, Illinois, USA
  • E. Daly, G.K. Davis, M.A. Drury, J.F. Fischer, A.D. Palczewski, C.E. Reece
    JLab, Newport News, Virginia, USA
  • M.C. Ross
    SLAC, Menlo Park, California, USA
 
  Funding: Work supported, in part, by the US DOE and the LCLS-II Project under U.S. DOE Contract No. DE-AC05-06OR23177 and DE-AC02-76SF00515.
The ”Linac Coherent Light Source-II” Project will construct a 4 GeV CW superconducting RF linac in the first kilometer of the existing SLAC linac tunnel. The baseline design calls for 280 1.3 GHz nine-cell cavities with an average intrinsic quality factor Q0 of 2.7·1010 at 2K and 16 MV/m accelerating gradient. The LCLS-II high Q0 cavity treatment protocol utilizes the reduction in BCS surface resistance by nitrogen doping of the RF surface layer, which was discovered originally at FNAL. Cornell University, FNAL, and TJNAF conducted a joint high Q0 R&D program with the goal of (a) exploring the robustness of the N-doping technique and establishing the LCLS-II cavity high Q0 processing protocol suitable for production use, and (b) demonstrating that this process can reliably achieve LCLS-II cavity specification in a production acceptance testing setting. In this paper we describe the LCLS-II cavity protocol and analyze combined cavity performance data from both vertical and horizontal testing at the three partner labs, which clearly shows that LCLS-II specifications were met, and thus demonstrates readiness for LCLS-II cavity production.
 
Export • reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml)  
 
MOPB039 Analysis of BCS RF Loss Dependence on N-Doping Protocols 174
 
  • A.D. Palczewski, P. Dhakal, C.E. Reece
    JLab, Newport News, Virginia, USA
 
  Funding: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177 with supplemental funding from the LCLS-II Project U.S. DOE Contract No. DE-AC02-76SF00515.
We present a study on two parallel-path SRF cavities (one large grain and one fine grain, 1.3 GHz) which seeks to explain the correlation between the amount of nitrogen on the inner surface of a “nitrogen doped” SRF cavity and the change in the temperature dependant (packaged into term BCS) RF losses. For each doping/EP, the cavities were tested at multiple temperatures (2.0 K to 1.5 K in 0.1 K steps) to create a Q0 vs. Eacc vs. T matrix which then could be used to extract temperature dependant and independent components. After each test, the cavities were thermally cycled to 120 K and then re-cooled and retested to assess if evidence of hydrogen migration might appear even at a small level. In addition, TD-5 was also tested at fixed low field (Q0 vs. T) to fit standard BCS theory. In parallel, SIMS data was taken on like-treated samples to correlate the amount of nitrogen within the RF surface to the change in the temperature dependant fitting parameter “A”.**
[**] H.Tian et al., contributed to SRF2015.
 
Export • reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml)  
 
MOPB041 Cryomodule Testing of Nitrogen-Doped Cavities 182
 
  • D. Gonnella, B. Clasby, R.G. Eichhorn, B. Elmore, F. Furuta, G.M. Ge, D.L. Hall, Y. He, G.H. Hoffstaetter, J.J. Kaufman, P.N. Koufalis, M. Liepe, J.T. Maniscalco, T.I. O'Connell, P. Quigley, D.M. Sabol, E.N. Smith, V. Veshcherevich
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • A. Grassellino, C.J. Grimm, J.P. Holzbauer, O.S. Melnychuk, Y.M. Pischalnikov, A. Romanenko, W. Schappert, D.A. Sergatskov
    Fermilab, Batavia, Illinois, USA
  • A.D. Palczewski, C.E. Reece
    JLab, Newport News, Virginia, USA
 
  Funding: DOE and the LCLS-II High Q Project
The Linac Coherent Light Source-II (LCLS-II) is a new FEL x-ray source that is planned to be constructed in the existing SLAC tunnel. In order to meet the required high Q0 specification of 2.7x1010 at 2 K and 16 MV/m, nitrogen-doping has been proposed as a preparation method for the SRF cavities in the linac. In order to test the feasibility of these goals, four nitrogen-doped cavities have been tested at Cornell in the Horizontal Test Cryomodule (HTC) in five separate tests. The first three tests consisted of cavities assembled in the HTC with high Q input coupler. The fourth test used the same cavity as the third but with the prototype high power LCLS-II coupler installed. Finally, the fifth test used a high power LCLS-II coupler, cavity tuner, and HOM antennas. Here we report on the results from these tests along with a systematic analysis of change in performance due to the various steps in preparing and assembling LCLS-II cavities for cryomodule operation. These results represent one of the final steps to demonstrate readiness for full prototype cryomodule assembly for LCLS-II.
 
Export • reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml)  
 
MOPB110 The Transfer of Improved Cavity Processing Protocols to Industry for LCLS-II: N-Doping and Electropolishing 418
 
  • C.E. Reece, F. Marhauser, A.D. Palczewski
    JLab, Newport News, Virginia, USA
 
  Funding: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177 with supplemental funding from the LCLS-II Project U.S. DOE Contract No. DE-AC02-76SF00515.
Based on the R&D efforts of colleagues at FNAL, Cornell, and JLab, the LCLS-II project adopted a modification to the rather standard niobium SRF cavity surface processing protocol that incorporates a high temperature diffusion doping with nitrogen gas. This change was motivated by the resulting higher Q0 and the prospect of significantly lower cryogenic heat load for LCLS-II. JLab is responsible for managing the cavity procurement for the LCLS-II project. The first phase of the procurement action is to transfer the nitrogen-doping protocol to the industrial vendors. We also seek to exploit improvements in understanding of the niobium electropolishing process as part of the production processing of the TESLA-style LCLS-II cavities. We report on the technology transfer activities and progress toward the envisaged performance demonstration of vendor-processed cavities.
 
Export • reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml)  
 
TUBA05 Progress With Multi-Cell Nb3Sn Cavity Development Linked With Sample Materials Characterization 505
 
  • G.V. Eremeev, M.J. Kelley, C.E. Reece
    JLab, Newport News, Virginia, USA
  • M.J. Kelley, U. Pudasaini
    The College of William and Mary, Williamsburg, Virginia, USA
  • J. Tuggle
    Virginia Polytechnic Institute and State University, Blacksburg, USA
 
  Funding: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177.
Exploiting both the new Nb3Sn coating system and the materials characterization tools nearby, we report our progress in low-loss Nb3Sn films development. Nb3Sn films a few micrometers thick were grown on Nb coupons as well as single- and multi-cell cavities by the Sn-diffusion technique. Films structure and composition were investigated on coated samples and cavity cutouts with characterization tools including SEM/EDS/EBSD, AFM, XPS, SIMS towards correlating film growth and RF loss to material properties and deposition parameters. Cavity coating efforts focused on establishing techniques for coating progressively more complicated RF structures, and understanding limiting mechanisms in coated cavities. Nb3Sn coated 1.5 GHz 1-cell and 1.3 GHz 2-cell cavities have shown quality factors of 1010 at 4.3 K, with several cavities reaching above Eacc = 10 MV/m. The dominant limiting mechanisms were low field quenches and quality factor degradation above 8 MV/m. The surface data indicates a near-stoichiometric Nb3Sn consistent with the transition temperature and gap measurements. The Nb3Sn layer is covered with Nb2O5 and SnO2 native oxides and has little memory of the pre-coating surface.
 
slides icon Slides TUBA05 [2.418 MB]  
Export • reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml)  
 
TUBA08 Growth and Characterization of Multi-Layer NbTiN Films 516
 
  • A-M. Valente-Feliciano, G.V. Eremeev, C.E. Reece, J.K. Spradlin
    JLab, Newport News, Virginia, USA
  • M.C. Burton, R.A. Lukaszew
    The College of William and Mary, Williamsburg, Virginia, USA
 
  Significant theoretical interest has stimulated efforts to grow and characterize thin multi-layer superconductor/insulator/superconductor structures for their potential capability of supporting otherwise inaccessible surface magnetic fields in SRF cavities. The technological challenges include realization of high quality superconductors with sharp, clean, transition to high quality dielectric materials and back to superconductor, with careful thickness control of each layer. Choosing NbTiN as the first candidate material, we have developed the tools and techniques that produce such SIS film structures and have begun their characterization. Using DC magnetron sputtering and HiPIMS, NbTiN and AlN can be deposited with nominal superconducting and dielectric parameters. Hc1 enhancement is observed for NbTiN layers with a Tc of 16.9 K for a thickness less than 150 nm. The optimization of the thickness of each type of layer to reach optimum SRF performance is underway. This talk describes this work and the rf performance characteristics observed to date.  
slides icon Slides TUBA08 [8.536 MB]  
Export • reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml)  
 
TUPB029 Material Quality & SRF Performance of Nb Films Grown on Cu via ECR Plasma Energetic Condensation 622
 
  • A-M. Valente-Feliciano, G.V. Eremeev, C.E. Reece, J.K. Spradlin
    JLab, Newport News, Virginia, USA
  • S. Aull
    CERN, Geneva, Switzerland
  • Th. Proslier
    ANL, Argonne, Illinois, USA
 
  Funding: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177.
The RF performance of bulk Nb cavities has continuously improved over the years and is approaching the intrinsic limit of the material. Although some margin seems still available with processes such as N surface doping, long term solutions for SRF surfaces efficiency enhancement need to be pursued. Over the years, Nb/Cu technology, despite its shortcomings, has positioned itself as an alternative route for the future of superconducting structures used in accelerators. Significant progress has been made in recent years in the development of energetic deposition techniques such as Electron Cyclotron Resonance (ECR) plasma deposition. Nb films with very high material quality have then been produced by varying the deposition energy alluding to the promise of performing SRF films. This paper presents RF measurements, correlated with surface and material properties, for Nb films showing how, by varying the film growth conditions, the Nb film quality and surface resistance can be altered and how the Q-slope can be eventually overcome.
 
Export • reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml)  
 
TUPB037 Superconducting NbN-Based Multilayer and NbTiN Thin Films for the Enhancement of SRF Accelerator Cavities 638
 
  • M.C. Burton, M. Beebe, R.A. Lukaszew, J.M. Riso
    The College of William and Mary, Williamsburg, Virginia, USA
  • C.E. Reece, A-M. Valente-Feliciano
    JLab, Newport News, Virginia, USA
 
  Funding: Funded by: Defense Threat Reduction Agency HDTRA1-10-1-0072
Current superconducting radio frequency (SRF) technology, used in various particle accelerator facilities is reliant upon bulk Nb. Due to technological advancements in the processing of bulk Nb cavities, the facilities have reached accelerating fields very close to material-dependent limits, i.e. ~50 MV/m for bulk Nb. One possible solution to overcome this limit proposed by A. Gurevich consists of the deposition of alternating thin layers of superconducting and insulating materials on the interior surface of the cavities which may prevent early field penetration and thus delay high field breakdown*. Some candidate materials proposed for this scheme are NbN and NbTiN. Here we present experimental results correlating film microstructure and surface morphology with superconducting properties on coupon samples made with NbN and NbTiN. We have achieved thin films with close to bulk-like lattice parameters and transition temperatures, while achieving Hc1 values larger than bulk for films thinner than their London penetration depths. We compare results from samples grown utilizing NbTi targets with different stoichiometries and we will show RF measurements from 2” coupon samples.
*A. Gurevich, Appl. Phys. Lett. 88, 012511 (2006).
 
poster icon Poster TUPB037 [0.989 MB]  
Export • reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml)  
 
TUPB046 Structure and Composition of Nb3Sn Diffusion Coated Films on Nb 669
 
  • J. Tuggle, M.J. Kelley
    Virginia Polytechnic Institute and State University, Blacksburg, USA
  • G.V. Eremeev, M.J. Kelley, C.E. Reece
    JLab, Newport News, Virginia, USA
  • M.J. Kelley, H. Xu
    The College of William and Mary, Williamsburg, Virginia, USA
 
  Funding: Co-authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177. College of William & Mary supported by U.S. DOE Office of High Energy Physics under grant DE-SC-0014475
The structure and composition of Nb3Sn films obtained by diffusion coating niobium coupons and SRF cavities were investigated by x-ray photoelectron spectroscopy (XPS), secondary ion mass spectroscopy (SIMS) and scanning electron microscopy (SEM) with energy-dispersive x-ray spectroscopy (EDS) and electron back-scatter diffraction (EBSD), including native surfaces, depth profiles and cross-sections. We find that the native surface oxide is significantly tin-rich, we have measured depth profiles. We find that the grains apparent in the SEM images are individual crystallites having no evident relationship to the substrate or each other.
 
Export • reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml)  
 
TUPB054 Local Composition and Topography of Nb3Sn Diffusion Coatings on Niobium 703
 
  • U. Pudasaini, M.J. Kelley
    The College of William and Mary, Williamsburg, Virginia, USA
  • G.V. Eremeev, M.J. Kelley, C.E. Reece
    JLab, Newport News, Virginia, USA
 
  Funding: Co-authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177. College of William & Mary supported by U.S. DOE Office of High Energy Physics under grant DE-SC-0014475.
The potential for energy savings and for increased gradient continues to bring attention to Nb3Sn-coated niobium as a future SRF cavity technology. We prepared these materials by vapor diffusion coating on polycrystalline and single crystal niobium. The effect of changing substrate preparation, coating parameters and post-treatment were examined by AFM and SEM/EDS. The AFM data were analyzed in terms of power spectral density (PSD). We found little effect of pre-coating topography on the result. The PSD’s show some surprising kinship to those obtained from BCP-treated surfaces. SEM/EDS revealed no composition non-uniformities at the micron scale.
 
Export • reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml)  
 
TUPB063 A Multi-Sample Residual Resistivity Ratio System for High Quality Superconductor Measurements 726
 
  • J.K. Spradlin, C.E. Reece, A-M. Valente-Feliciano
    JLab, Newport News, Virginia, USA
 
  Funding: This work is supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under contract DE-AC05-06OR2317.
For developing accelerator cavity materials, superconducting transition temperature (TC), transition width (ΔTC), and residual resistivity ratio (RRR), are useful parameters to correlate with SRF performance and fabrication processes of bulk, thin film, and novel materials. The RRR gauges the purity and structure of the superconductor based on the temperature dependence of electron scattering in the normal conducting state. Combining a four point probe delta pulse setup with a switch allows multiplexing of the electrical measurements to 32 samples per cooldown cycle. The samples are measured inside of an isothermal setup in a liquid helium (LHe) dewar. The isothermal setup is required for a quasistatic warmup of the samples through TC. This contribution details the current setup for collecting RRR and TC data, the current standard of throughput, measurement quality of the setup, and the improvements underway to increase the system’s resolution and ease of use.
 
Export • reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml)