

Progress with multi-cell Nb₃Sn cavity development linked with sample materials characterization

Grigory Eremeev

Experimental setup

B. Hillenbrand and H. Martens, J. Appl. Phys. 47, 4151 (1976)

Experimental setup

Jefferson Lab

Cavity experimentation

Nb₃Sn coated surface

Nb₃Sn on Nb grains

 Δ = 3.4 meV, ~2x larger than that of niobium

Jefferson Lab

Features were confined to one strip of niobium. The rest of the surface had visually uniform Nb₃Sn coating

Summary of cavity results

BL1, Q₀ vs E_{acc} @ 4.3 K, 11feb2015 BL1, Q vs E @ 2.0 K, 12feb2015 BL1, Q₀ vs E_{acc} @ 4.3 K, 29july2015 BL1, Q₀ vs E_{acc} @ 2.0 K, 29july2015 Cable heating 1E11 at high P_{fwd} ര് 1E10 1E9 10 12 14 16 18 0 2 4 6 8 20 E_{sc} [MV/m]

Reproducible Q_0 at 4.3 & 2.0 K after re-coating. Quench gradient improved after 5 μ m EP before the second coating.

Reproducible $\,{\rm Q}_0\,$ at 4.3 & 2.0 K after re-coating. Variation in the Q-slope probably due to FE.

Summary of cavity results

The coating results in Q0 ~ 1E10 below 4.3K for <u>most</u> cavities. The cavities are limited by Q_o degradation and low field quench. Coatings are reproducible for the same cavity.

The potential reasons for Q_o degradation are:

Diffusion driven process -> Sn gradient -> stoichiometry variation?

Cl or Ti contamination?

Modelling and analysis approach

9/16/2015 7

17.5

18

Temperature (K)

18.5

19

19.5

17

16.5

S

Sample results

Jefferson Lab

Cutouts results

E_{acc} [MV/m]

10

Surface analysis summary

10

Jefferson Lab

Summary and Outlook

Summary:

- Diffusion-based Nb₃Sn coating have been applied to 1-cell 1.5 GHz welded and 2-cell 1.3 GHz seamless cavities.
- The cavities reached up to $E_{acc} = 16 \text{ MV/m}$ limited by strong Q-slope ("Wuppertal" slope) and early quenches.
- The coated Nb_3Sn has the energy gap of about 3.4 meV and the transition temperature of about 18 K consistent with the high quality Nb_3Sn .
- The coating is reproducible for the same cavity, but varies significantly between cavities.
- Surface studies indicate (24.5 ± 2) % Sn content consistent with high quality Nb₃Sn.
- XPS data indicates no gross TI or Cl contamination; a thin layer of Nb_2O_5/SnO_2 on the surface

Outlook:

Coating non-uniformity Low field quenches Q-slope Cryomodule demonstration

Acknowledgements

- Jlab technical staff for assistance with cavity preparation
- Peter Kneisel for the cavities
- Josh Spradlin for sample T_c measurements
- Bill Clemens, Kurt Macha, HyeKyoung Park, Scott Williams, Anne-Marie Valente-Feliciano, and Larry Phillips for valuable suggestions
- Cornell and Fermilab colleagues for useful discussions
- Bob Rimmer for continued support

Co-authors

 Uttar Pudasaini , Jay Tuggle, Michael Kelley, Charlie Reece

We are grateful for support from the Office of High Energy Physics, U.S.Department of Energy under grant DE-SC-0014475 to the College of William & Mary.

