Paper | Title | Page |
---|---|---|
MOPB028 | Preservation of Very High Quality Factors of 1.3 GHz Nine Cell Cavities From Bare Vertical Test to Dressed Horizontal Test | 149 |
|
||
In this contribution we will report quality factor evolution of several different nine cell N doped cavities with very high Q. The evolution of the quality factor will be reported from bare to dressed in vertical test to dressed in horizontal test with unity coupling to dressed in horizontal test and CM-like environment/configuration (with RF ancillaries). Cooling studies and optimal cooling regimes will be discussed for both vertical and horizontal tests and comparisons will be drawn also for different styles titanium vessels. Studies of sensitivities to magnetic field in final horizontal configuration have been performed by applying a field around the dressed cavity and varying the cooling; parameters required for a very good flux expulsion will be presented. | ||
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | |
TUPB056 | Characterization of Nb3Sn Coated Nb Samples | 708 |
|
||
Nb3Sn has a great potential to replace traditional Nb for the fabrication of SRF cavities. The higher critical temperature of Nb3Sn potentially allows for an increased operational temperature for SRF cavities, which promises cryogenic cost savings. We present preliminary characterization of Nb3Sn layer grown on flat Nb sample prepared by the same chemical vapor deposition method that is used for the cavity coating. SEM, TEM/EDS, TEM imaging and diffraction characterization was used in order to evaluate any chemical and structural defects that could be responsible for the limited quench field and high residual resistance. Variation of local stoichiometry was found in the Nb3Sn layer, which is in line with previous studies. Regions of decreased Sn content can have a lower Tc in comparison to the stoichiometric composition, which may be responsible for the limited performance. AES investigations of the Nb3Sn surface before and after HF-rinse were done in order to explore the mechanism that is responsible for the performance degradation of HF-rinsed Nb3Sn coated cavities. | ||
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | |
TUPB095 | Resonance Control for Narrow-Bandwidth, Superconducting RF Applications | 828 |
|
||
Optimal control techniques have been employed in a variety of applications since they were first developed more than 60 years ago but until now they have been used in few if any accelerator-related applications. The next generation of superconducting accelerators will require both precise control of the gradient and active stabilization of the resonance frequency. Optimal control techniques provide a self-consistent framework within which to construct a combined electro-mechanical controller. Results from recent cold cavity tests at Fermilab are presented. | ||
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | |
MOBA03 | Sensitivity of Niobium Superconducting RF Cavities to Magnetic Field | 34 |
|
||
One important characteristic of nitrogen-doped cavities is their very high sensitivity to increased residual surface resistance from trapped ambient magnetic flux. We have performed a systematic study on the losses by trapped flux, and their dependence on the mean-free-path (MFP) of the niobium RF penetration layer. Cavities with a wide range of MFP values were tested in uniform ambient magnetic fields to measure trapped magnetic flux and resulting increase in RF surface resistance. MFP values were determined from surface impedance measurements. It was found that larger mean free paths lead to lower sensitivity to trapped magnetic flux. | ||
![]() |
Slides MOBA03 [1.817 MB] | |
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | |
MOBA08 | Niobium Impurity-Doping Studies at Cornell and CM Cool-Down Dynamic Effect on Q0 | 55 |
|
||
As part of a multi-laboratory research initiative on high Q0 niobium cavities for LCLS-II and other future CW SRF accelerators, Cornell has conducted an extensive research program during the last two years on impurity-doping of niobium cavities and related material characterization. Here we give an overview of these activities, and present results from single-cell studies, from vertical performance testing of nitrogen-doped nine-cell cavities, and from cryomodule testing of nitrogen-doped nine-cell cavities. | ||
![]() |
Slides MOBA08 [8.983 MB] | |
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | |
MOPB004 | Understanding the Field Dependence of the Surface Resistance in Nitrogen-Doped Cavities | 74 |
|
||
Funding: NSF Grant PHYS-1416318 An important limiting factor in the performance of superconducting radio frequency (SRF) cavities in medium and high field gradients is the intrinsic quality factor and, thus, the surface resistance of the cavity. The exact dependence of the surface resistance on the magnitude of the RF field is not well understood. We present an analysis of experimental data of LT1-3 and LT1-4, 1.3 GHz single-cell nitrogen-doped cavities prepared and tested at Cornell. Most interestingly, the cavities display anti-Q slopes in the medium-field region (i.e. Rs decreases with increasing accelerating field). We extract the temperature dependent surface resistances of the cavities, analyze field dependencies, and compare with theoretical predictions. These comparisons and analyses provide new insights into the field dependence of the surface resistance and improve our understanding of the mechanisms behind the effect. |
||
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | |
MOPB005 | Developing a Setup to Measure Field Dependence of BCS Surface Resistance | 77 |
|
||
Funding: NSF/DOE The temperature-dependent part of the microwave surface resistance of superconducting radio-frequency (SRF) cavities has been shown experimentally to depend on the strength of the applied magnetic surface field. Several theories have recently been proposed to describe this phenomenon. In this paper we present work on the development of a microwave cavity setup for measuring the field-dependence with an applied DC magnetic field. |
||
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | |
MOPB006 | Hc2 Measurements of Superconductors | 79 |
|
||
Funding: NSF/DOE Recently, Cornell has improved a method for extracting the upper critical field Hc2 of a thin-film superconductor using four-point resistivity measurements. In the field of superconducting radio-frequency accelerators (SRF), novel materials and processes such as nitrogen-doped niobium and Nb3Sn may allow for improved SRF performance and cost efficiency over traditional niobium. In this paper we present updated results on Hc2 measurements for Nb3Sn, as well as results for niobium prepared with an 800 C bake. We also extract important material properties from these measurements, such as the Ginzburg Landau parameter, the mean free path, and coherence length, which are critical for determining SRF performance. |
||
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | |
MOPB033 | LCLS-II SRF Cavity Processing Protocol Development and Baseline Cavity Performance Demonstration | 159 |
|
||
Funding: Work supported, in part, by the US DOE and the LCLS-II Project under U.S. DOE Contract No. DE-AC05-06OR23177 and DE-AC02-76SF00515. The ”Linac Coherent Light Source-II” Project will construct a 4 GeV CW superconducting RF linac in the first kilometer of the existing SLAC linac tunnel. The baseline design calls for 280 1.3 GHz nine-cell cavities with an average intrinsic quality factor Q0 of 2.7·1010 at 2K and 16 MV/m accelerating gradient. The LCLS-II high Q0 cavity treatment protocol utilizes the reduction in BCS surface resistance by nitrogen doping of the RF surface layer, which was discovered originally at FNAL. Cornell University, FNAL, and TJNAF conducted a joint high Q0 R&D program with the goal of (a) exploring the robustness of the N-doping technique and establishing the LCLS-II cavity high Q0 processing protocol suitable for production use, and (b) demonstrating that this process can reliably achieve LCLS-II cavity specification in a production acceptance testing setting. In this paper we describe the LCLS-II cavity protocol and analyze combined cavity performance data from both vertical and horizontal testing at the three partner labs, which clearly shows that LCLS-II specifications were met, and thus demonstrates readiness for LCLS-II cavity production. |
||
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | |
MOPB040 | Performance of Dressed Cavities for the Jefferson Laboratory LCLS-II Prototype Cryomodule - With Comparison to the Pre-Dressed Performance | 178 |
|
||
Funding: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177 with supplemental funding from the LCLS-II Project U.S. DOE Contract No. DE-AC02-76SF00515. Initial vertical RF test results and quench studies for six of the eight undressed 9 cell cavities slated for use in the Jefferson laboratory LCLS-II prototype cryomodule were presented at IPAC2015*. For the final string 2 more cavities AES029 and AES030 (work done at Cornell) are being processed and tested for qualification before helium vessel welding. In addition, AES034 (initial R&D treatment) is being reworked with the current production protocol after a surface reset to improve the overall performance. After final qualification all 8 cavities will be welded into helium vessels and equipped with HOM couplers. In this paper we will present the final undressed and dressed vertical RF data comparing the changes in the surface resistance before their installation in the cryomodule string. *A.D. Palczewski et al. Quench Studies of Six High Temperature Nitrogen Doped 9 Cell Cavities for use in the LCLS-II Prototype Cryo-module at Jefferson Laboratory, Proc. IPAC2015, WEPWI019, 2015. |
||
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | |
MOPB041 | Cryomodule Testing of Nitrogen-Doped Cavities | 182 |
|
||
Funding: DOE and the LCLS-II High Q Project The Linac Coherent Light Source-II (LCLS-II) is a new FEL x-ray source that is planned to be constructed in the existing SLAC tunnel. In order to meet the required high Q0 specification of 2.7x1010 at 2 K and 16 MV/m, nitrogen-doping has been proposed as a preparation method for the SRF cavities in the linac. In order to test the feasibility of these goals, four nitrogen-doped cavities have been tested at Cornell in the Horizontal Test Cryomodule (HTC) in five separate tests. The first three tests consisted of cavities assembled in the HTC with high Q input coupler. The fourth test used the same cavity as the third but with the prototype high power LCLS-II coupler installed. Finally, the fifth test used a high power LCLS-II coupler, cavity tuner, and HOM antennas. Here we report on the results from these tests along with a systematic analysis of change in performance due to the various steps in preparing and assembling LCLS-II cavities for cryomodule operation. These results represent one of the final steps to demonstrate readiness for full prototype cryomodule assembly for LCLS-II. |
||
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | |
MOPB042 | Fundamental Studies on Doped SRF Cavities | 187 |
|
||
Funding: NSF Recently, doping with nitrogen has been demonstrated to help SRF cavities reach significantly higher intrinsic quality factors than with standard procedures. However, the quench fields of these cavities have also been shown to be frequently reduced. Here we report on fundamental studies of doped cavities, investigating the source of reduced quench field and exploring alternative dopants. We have focused on studying the quench of nitrogen-doped cavities with temperature mapping and measurements of the flux penetration field using pulsed power to investigate maximum fields in nitrogen doped cavities. We also report on studies of cavities doped with other gases such as helium. These studies have enabled us to shed light on the mechanisms behind the higher Q and lower quench fields that have been observed in cavities doped with impurities. |
||
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | |
MOPB084 | Performance of Nitrogen-Doped 9-Cell SRF Cavities in Vertical Tests at Cornell University | 328 |
|
||
Cornell University treated five LCLS-II 9-cell cavities by nitrogen-doping recipe. In this paper, we reported the performance of these 9-cell cavities. In the treatments, the nitrogen recipes are slightly different. The cavities have been firstly doped under high nitrogen pressure; after the vertical tests some of the cavities has been reset the surface and re-doped under light nitrogen pressure. The detail of the cavity preparation and test results will be shown. The comparison of the different recipes will be discussed. | ||
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | |
MOPB085 | Efforts of the Improvement of Cavity Q-Value by Plasma Cleaning Technology: Plan and Results From Cornell University | 333 |
|
||
We reported the plasma works at Cornell University. The plasma has been generated for 1) surface cleaning to reduce field emission; 2) the cavity quality factor improvement. The experiment design, including RF design, the gas type and pressure selection, the external DC magnetic field calculation, had been discussed. The plasma experiment set-up by using a 1.3GHz single-cell cavity is shown. Argon and helium plasma was successfully ignited in the cavity; the results of the plasma processing will be displayed. | ||
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | |
TUBA04 | Nb3Sn Cavities: Material Characterization and Coating Process Optimization | 501 |
|
||
Funding: Work supported by DOE grant DE-SC0008431 and NSF grant PHY-141638. Use of CCMR via NSF MRSEC program (DMR-1120296) Recent progress on vapour diffusion coated Nb3Sn SRF cavities makes this material a very promising alternative for CW medium field SRF applications. In this paper we report on several systematic studies to determine the sources currently limiting the performance of Nb3Sn cavities to determine improved coating parameters to overcome these limitations. These include a detailed study of the sensitivity of Nb3Sn to trapped ambient magnetic flux, a first measurement of the field dependence of the energy gap in Nb3Sn and detailed measurements of the stoichiometry of the obtained Nb3Sn coatings with synchrotron x-ray diffraction and STEM. Initial results from a study on the impact of the coating process parameters on energy gap, Q-slope, and residual resistance, show clear dependencies, and thus directions for process optimization. |
||
![]() |
Slides TUBA04 [3.872 MB] | |
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | |
TUPB030 | Recent Results from the Cornell Sample Host Cavity | 626 |
|
||
Funding: DOE/NSF Many novel materials are under investigation for the future of superconducting radio-frequency accelerators (SRF). In particular, thin-film materials such as Nb3Sn, NbN, SIS multilayers, and also thin-film niobium on copper, may offer improvements in cost efficiency and RF performance over the standard niobium cavities. To avoid the difficulties of depositing thin films on full cavities, Cornell has developed a TE-mode sample host cavity which allows for RF measurements of large, flat samples at fields up to and over 100 mT. We present recent performance results from the cavity, reaching record high fields and quality factor using a niobium calibration plate. We also discuss plans for future collaborations. |
||
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | |
TUPB041 | Testing Nb3Sn Coating Using muSR | 651 |
|
||
The SRF group at TRIUMF has tested samples relevant for SRF application since 2010 using the TRIUMF μSR facility. In this study collaborators at Cornell coat a Nb coin and a Nb ellipsoid sample with Nb3Sn for characterization using μSR at TRIUMF. Field of first flux entry measurements are performed at M20 on both samples. Measurements include the vortex nucleation field Hnucleate and Tc of both Nb3Sn and Nb. Interestingly the Nb3Sn increases the vortex nucleation field at 2K over standard Nb samples. | ||
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | |
TUPB044 | High Quality Factor Studies in SRF Nb3Sn Cavities | 661 |
|
||
Funding: Work supported by DOE grant DE-SC0008431 and NSF grant PHY-141638 A significant advantage of Nb3Sn coated on niobium over conventional bulk niobium is the substantial reduction in the BCS losses at equal temperatures of the former relative to the latter. The quality factor of a 1.3 GHz Nb3Sn cavity is thus almost entirely dictated by the residual resistance at temperatures at and below 4.2 K, which, if minimised, offers the ability to operate the cavity in liquid helium at atmospheric pressure with quality factors exceeding 4·1010. In this paper we look at the impact of the cooldown procedure – which is intrinsically linked to the effect of spatial and temporal gradients – and the impact of external ambient magnetic fields on the performance of a Nb3Sn cavity. |
||
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | |
TUPB045 | Surface Analysis and Material Property Studies of Nb3Sn on Niobium for Use in SRF Cavities | 665 |
|
||
Funding: Work supported by DOE grant DE-SC0008431 and NSF grant PHY-141638. Use of CCMR via NSF MRSEC program (DMR-1120296) Studies of superconducting Nb3Sn cavities and samples at Cornell University and Argonne National Lab have shown that current state-of-the-art Nb3Sn cavities are limited by material properties and imperfections. In particular, the presence of regions within the Nb3Sn layer that are deficient in tin are suspected to be the cause of the lower than expected peak accelerating gradient. In this paper we present results from a material study of the Nb3Sn layer fabricated using the vapour deposition method, with data collected using AFM, SEM, TEM, EDX, and XRD methods as well as with pulsed RF testing. |
||
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | |
TUPB049 | Cutout Study of a Nb3Sn Cavity | 681 |
|
||
The first 1.3 GHz single cell Nb3Sn cavity coated at Cornell was shown in RF measurements at Cornell and FNAL to have poor RF performance. Though subsequent cavities showed much higher quality factors, this cavity exhibited Q0 on the order of 109 caused by strong heating concentrated in one of the half cells. This paper presents an investigation into the source of this excess heating, for the purpose of process improvement, so that similar degradation can be avoided in future coatings. Through the use of temperature mapping both at Cornell and at FNAL, locations with high and low surface resistance were located, cut out from the cavity, and studied with microscopic tools. We present the RF measurements and temperature maps as well as the microscopic analyses, then conclude with plans for continued studies. | ||
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | |
TUPB081 | Multi-Cell Temperature Mapping and Conclusions | 783 |
|
||
Multi-cell temperature mapping (T-map) system has been developed and applied on SRF Nb cavities vertical tests (VT) at Cornell. It has nearly two thousand thermometers and achieved a 1mK resolution of niobium surface temperature rinsing in superfluid helium . We have upgraded the system to be capable of monitoring the temperature profiles of quench spot on cavity. The recent results of T-map during cavity tests and details will be reported. | ||
![]() |
Poster TUPB081 [4.421 MB] | |
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | |
THBA05 | Higher Order Mode Absorbers for High Current SRF Applications | 1036 |
|
||
Efficient damping of the higher-order modes (HOMs) of the superconducting cavities is essential for any high current operation. The talk will provide an overview on the latest advances of HOM absorber development for high intensity SRF applications. As the ideal absorber does not exist, the different conceptual approaches will be presented and the associated issues are outlined. Design examples from various labs will be given that help explain the issues and resolutions. Some focus will be given to the Cornell HOM beamline absorber that was design for high current, short bunch operation with up to 400 W heating. The design will be reviewed and testing results will be reported. | ||
![]() |
Slides THBA05 [4.022 MB] | |
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | |
FRAA04 | Performance of the Cornell ERL Main Linac Prototype Cryomodule | 1437 |
|
||
Cornell has designed, fabricated, and tested (by the time of the conference) a high current (100 mA) CW SRF prototype cryomodule for the Cornell ERL. This talk will report on the design and performance of this very high Q0 CW cryomodule including design issues and mitigation strategies. | ||
![]() |
Slides FRAA04 [4.614 MB] | |
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | |