Paper | Title | Page |
---|---|---|
MOOCN3 | RHIC Polarized Proton Operation | 41 |
|
||
Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy. RHIC operation as the polarized proton collider presents unique challenges since both luminosity and spin polarization are important. With longitudinally polarized beams at the experiments, the figure of merit is LP4. A lot of upgrades and modifications have been made since last polarized proton operation. A 9 MHz rf system has been installed to improve longitudinal match at injection and to increase luminosity. The beam dumps were upgraded to allow for increased bunch intensities. A vertical survey of RHIC was performed before the run to get better magnet alignment. The orbit control has also been improved this year. Additional efforts were put in to improve source polarization and AGS polarization transfer efficiency. To preserve polarization on the ramp, a new working point was chosen such that the vertical tune is near a third order resonance. The overview of the changes and the operation results are presented in this paper. |
||
![]() |
Slides MOOCN3 [2.331 MB] | |
MOP066 | Effects of e-beam Parameters on Coherent Electron Cooling | 232 |
|
||
Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy. Coherent Electron Cooling (CeC) requires detailed con- trol of the phase between the hadron an the FEL-amplified wave packet. This phase depends on local electron beam parameters such as the energy spread and the peak current. In this paper, we examine the effects of local density variations on the cooling rates for CeC. |
||
MOP067 | Vlasov and PIC Simulations of a Modulator Section for Coherent Electron Cooling | 235 |
|
||
Funding: This work is supported by the US DOE Office of Science, Office of Nuclear Physics, grant numbers DE-SC0000835 and DE-FC02-07ER41499. Resources of NERSC were used under contract No. DE-AC02-05CH11231. Next generation ion colliders will require effective cooling of high-energy hadron beams. Coherent electron cooling (CEC) can in principle cool relativistic hadron beams on orders-of-magnitude shorter time scales than other techniques. We present Vlasov-Poisson and delta-f particle-in-cell (PIC) simulations of a CEC modulator section. These simulations correctly capture the subtle time and space evolution of the density and velocity wake imprinted on the electron distribution via anisotropic Debye shielding of a drifting ion. We consider 1D and 2D reduced versions of the problem, and compare the exact solutions of Wang and Blaskiewicz with Vlasov-Poisson and delta-f PIC simulations. We also consider interactions under non-ideal conditions where there is a density gradient in the electron distribution, and present simulations of the ion wake. * V.N. Litvinenko and Y.S. Derbenev, Phys. Rev. Lett. 102, 114801 (2009). |
||
MOP074 | Simulations of a Single-Pass Through a Coherent Electron Cooler for 40 Gev/n Au+79 | 244 |
|
||
Funding: US DOE Office of Science, Office of Nuclear Physics, grant No.’s DE-FG02-08ER85182 and DE-FC02-07ER41499. NERSC resources were supported by the DOE Office of Science, contract No. DE-AC02-05CH11231. Increasing the luminosity of ion beams in particle accelerators is critical for the advancement of nuclear and particle physics. Coherent electron cooling promises to cool high-energy hadron beams significantly faster than electron cooling or stochastic cooling. Here we show simulations of a single pass through a coherent electron cooler, which consists of a modulator, a free-electron laser, and a kicker. In the modulator the electron beam copropagates with the ion beam, which perturbs the electron beam density according to the ion positions. The FEL, which both amplifies and imparts wavelength-scale modulation on the electron beam. The strength of modulated electric fields determines how much they accelerate or decelerate the ions when electron beam recombines with the dispersion-shifted hadrons in the kicker region. From these field strengths we estimate the cooling time for a gold ion with a specific longitudinal velocity. * Vladimir N. Litvinenko, Yaroslav S. Derbenev, Physical Review Letters 102, 114801 (2009) |
||
THP062 | Beam Experiments Related to the Head-on Beam-beam Compensation Project at RHIC | 2243 |
|
||
Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy. Beam experiments have been performed in RHIC to determine some key parameters of the RHIC electron lenses, and to test the capability of verifying lattice modifications by beam measurements. We report the status and recent results of these experiments. |
||
THP081 | Beam Lifetime and Limitations during Low-Energy RHIC Operation | 2285 |
|
||
Funding: Work performed under contract No. DE-AC02-98CH10886 with the auspices of the DoE of United States. The low-energy physics program at the Relativistic Heavy Ion Collider (RHIC), motivated by a search for the QCD phase transition critical point, requires operation at low energies. At these energies, large nonlinear magnetic field errors and large beam sizes produce low beam lifetimes. A variety of beam dynamics effects such as Intrabeam Scattering (IBS), space charge and beam-beam forces also contribute. All these effects are important to understand beam lifetime limitations in RHIC at low energies. During the low-energy RHIC physics run in May-June 2010 at beam γ=6.1 and γ=4.1, gold beam lifetimes were measured for various values of space-charge tune shifts, transverse acceptance limitation by collimators, synchrotron tunes and RF voltage. This paper summarizes our observations and initial findings. |
||
THP149 | Amplification of Current Density Modulation in a FEL with an Infinite Electron beam | 2399 |
|
||
Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy. We show that the paraxial field equation for a free electron laser (FEL) in an infinitely wide electron beam with a kappa-2 energy distribution can be reduced to a fourth ordinary differential equation (ODE). Its solution for arbitrary initial phase space density modulation has been derived in the wave-vector domain. For initial current modulation with Gaussian profile, close form solutions are obtained in space-time domain. |
||
TUOAN2 | High Luminosity Electron-Hadron Collider eRHIC | 693 |
|
||
Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy. We present the design of future high-energy high-luminosity electron-hadron collider at RHIC called eRHIC. We plan on adding 20 (potentially 30) GeV energy recovery linacs to accelerate and to collide polarized and unpolarized electrons with hadrons in RHIC. The center-of-mass energy of eRHIC will range from 30 to 200 GeV. The luminosity exceeding 1034 cm-2 s-1 can be achieved in eRHIC using the low-beta interaction region with a 10 mrad crab crossing. We report on the progress of important eRHIC R&D such as the high-current polarized electron source, the coherent electron cooling and the compact magnets for recirculating passes. A natural staging scenario of step-by-step increases of the electron beam energy by builiding-up of eRHIC's SRF linacs and a potential of adding polarized positrons are also presented. |
||
![]() |
Slides TUOAN2 [4.244 MB] | |
THOBN3 | Proof-of-Principle Experiment for FEL-based Coherent Electron Cooling | 2064 |
|
||
Funding: This work is supported the U.S. Department of Energy Coherent electron cooling (CEC) has a potential to significantly boost luminosity of high-energy, high-intensity hadron-hadron and electron-hadron colliders*. In a CEC system, a hadron beam interacts with a cooling electron beam. A perturbation of the electron density caused by ions is amplified and fed back to the ions to reduce the energy spread and the emittance of the ion beam. To demonstrate the feasibility of CEC we propose a proof-of-principle experiment at RHIC using one of JLab’s SRF cryo-modules. In this paper, we describe the experimental setup for CeC installed into one of RHIC's interaction regions. We present results of analytical estimates and results of initial simulations of cooling a gold-ion beam at 40 GeV/u energy via CeC. * Vladimir N. Litvinenko, Yaroslav S. Derbenev, Physical Review Letters 102, 114801 |
||
![]() |
Slides THOBN3 [1.379 MB] | |