Improvements in the RHIC Polarized Proton Operation

Haixin Huang

March 28, 2011 PAC11

Spin Dynamics

• Spin precession in a planar circular accelerator [in the lab frame]

$$\frac{d\bar{S}}{dt} = \vec{\Omega} \times \vec{S} = -\frac{e}{\gamma m} [G\gamma \vec{B}_{\perp} + (1+G)\vec{B}_{\prime\prime}] \times \vec{S}$$

$$\frac{dP}{dt} = \vec{\Omega}_{rev} \times \vec{P} = -\frac{e}{\gamma m} [\vec{B}_{\perp}]$$

$$] imes ar{P}$$

$$v_{s} = \frac{\Omega}{f_{rev}} = G\gamma$$

G is anomalous magnetic moment, G=1.793 for protons

In the frame which moves with the particle

Siberian Snakes (Local Spin Rotators)

 180° Gy

 180°

 180° Gy

 $\cos(180^\circ v_{sp}) = \cos(\delta/2) \cdot \cos(180^\circ G\gamma)$ $\delta \neq 0^{\circ} \rightarrow \nu_{sp} \neq n$ No imperfection resonances Partial Siberian snake (AGS) $\delta = 180^\circ \rightarrow v_{sp} = \frac{1}{2}$ No imperfection resonances and No Intrinsic resonances **Full Siberian Snake**

Two Siberian Snakes in RHIC

180°

Depolarizing Resonances

<u>Spin tune:</u> Number of 360 degree spin rotations per turn <u>Depolarizing resonance condition:</u>

Number of spin rotations per turn = Number of spin kicks per turn

Imperfection Resonances

arising from sampling of error fields, fields due to closed orbit errors, etc. $G\gamma=n$ (integer)

Intrinsic Resonances

arise from sampling of focusing fields due to finite beam emittance.

 $G\gamma = kP \pm v_v$ P: Superperiodicity [RHIC: 3]

 v_v : Vertical betatron tune [RHIC: ~29.675]

Horizontal Intrinsic Resonances

1. horizontal non-vertical stable spin direction due to strong partial snake interaction with horizontal motion.

2. betatron motion coupled to the vertical betatron motion by coupling elements: solenoid, helical magnet.

 $v_s = k \pm v_x$

Snake Resonances

 $v_{sp} = k \pm n v_y$

n: integer [snake resonance order]

 v_{y} : Vertical betatron tune [RHIC: ~29.675]

Vertical Intrinsic Resonance Spectrum in RHIC

Intrinsic resonance strengths, protons in RHIC

Resonance strength

RHIC – First Polarized Hadron Collider

pC Scattering – the RHIC Polarimeters

Polarized Protons in the AGS

Two strong partial Siberian snakes

- Vertical betatron tune at 8.98
- Pulsed quadrupoles to jump across the many weak horizontal spin resonances driven by the partial snakes.

RHIC Polarization Transmission to 250GeV

• The relative gain of polarization by moving Q_y from .68 to .675 is 1.12. The close orbit error reduction gives additional gain.

Betatron Tune on the Ramp

Spin Tune Shift due to the Horizontal Orbit Angle in Snakes

The spin tune shift due to horizontal orbit angles in Snakes and rotators :

$$\delta Q_{sp} = \frac{1 + G\gamma}{2\pi} (2\alpha_{sn} + \alpha_{rt_ip6} + \alpha_{rt_ip8})$$

 $\alpha_{sn} = x'_{co_sn9} - x'_{co_sn3}$ $\alpha_{rt_ip} = x'_{co_rt_left} - x'_{co_rt_right}$

At 250 GeV:

	Orbit angle error, mrad	δ <i>Q_{sp}</i> , 10 ⁻³
Snakes	0.1	15.4
Rotator (in one IR)	0.1	7.7

On the acceleration ramp (the rotators are off) only α_{sn} contributes.

•The variation of snake angles on the (last half of) ramp was maintained within established tolerances during the Run-9: 7/10 resonance shift < \pm 0.001 => δQ_{sp} < \pm 0.005 => α_{sn} < \pm 30 µrad

Snake Angle Difference: run11 vs. run9

Snake angle (micro rad)

Polarization Simulations with Orbit Errors

The simulations established the tolerance on vertical closed orbit rms at 0.3 mm, or $|\epsilon_{imp}|<0.07$

Spin Tune Shift Caused by Imperfection Resonances

$$|\Delta Q_s| \leq \frac{1}{\pi} \arcsin\left[\sin^2 \frac{\pi \varepsilon_{imp}}{2}\right]$$
 where ε_{imp} is the resonance strength

The problem with reversed BPM offsets was found during Run10. Reversed offsets led to closed vertical orbit rms ~1 mm and the maximum imperfection resonance strength exceeding 0.1.

Corresponding spin tune shift along the acceleration ramp:

Above 100 GeV the spin tune shifts are considerable (>0.02 in Blue ring). Corresponding 7/10 resonance shift up to 0.004-0.005.

Measured Vertical Misalignments

NATIONAL

The realignment of the whole ring is done before run 11.

Orbit Statistics on the Ramp

Motivation for 9 MHz

- Short bunches during the ramp result in lower luminosity because of:
 - Transverse emittance growth
 - Instability
- The objective is to have long bunches on the ramp and short bunches during store
- 9 MHz makes long bunches without the emittance blowup
- At store (250 GeV)
 - Emittance preservation
 - Adiabatic damping
 - Rebucketing into 197 MHz

At Store

- 0.66 eVs
- •250 GeV
- •300 kV, 28 MHz

Bunch Shape after 9MHz and 28MHz Ramps

Ramp efficiency in Run9 and Run11

Run9, with 28MHz

NATIONAL LABORATORY

19

Haixin Huang

Benefit of 10Hz Feedback on Luminosity

purpose: stabilize beams against "natural" orbit oscillations at ~ 10 Hz. It also reduced backgrounds for experiment detectors.

RHIC Polarized Proton Parameters

Energy at injection	24.3	GeV/u
Energy at Store	250	GeV/c
Interaction points	6 8 10 12 2 4	clock
β* at injection	7.5 7.5 7.5 7.5 7.5 7.5	m
β* at store	.65 .65 7.5 7.5 3 7.5	m
Working points	ramp: (28.685, 28.675) Store: (28.69, 29.68)	
Snakes current	DC	
Spin rotator current	Ramp up after energy ramp	
Polarization at store	>45%	
Peak bunch intensity	1.4*10^11	
Peak luminosity	10^32	cm^-2s^-1

Polarization and Luminosity in a Store

Summary

- The higher polarization during this run comes from several improvements:
 - Much better orbit this run: vertical realignment; excellent orbit control on the ramp; BPM offset sign reversal.
 - Vertical tune moved further away from snake resonance 7/10. This is only possible with precise control of betatron tune.
 - High polarization out of AGS due to tune jump system.
- Higher luminosity is achieved with better ramp efficiency after introducing 9MHz cavity.
- Remaining Tasks:
 - Understand any polarization loss scheme;
 - Careful setup jump quads in the AGS to get full benefit;
 - Control emittance through the whole accelerator chain;
 - Introduce electron lenses to compensate beam-beam effect.

