Author: Chen, J.
Paper Title Page
MOPTY064 Compensation Strategies for Ramping Waveform of TPS Booster Synchrotron Main Power Supplies 1088
 
  • P.C. Chiu, J. Chen, Y.-S. Cheng, K.T. Hsu, K.H. Hu, K.-B. Liu, B.S. Wang, C.Y. Wu
    NSRRC, Hsinchu, Taiwan
 
  Booster synchrotron for the Taiwan photon source project which is a 3 GeV synchrotron light source constructed at NSRRC is in commissioning. The booster is designed to ramp electron beams from 150 MeV to 3 GeV in 3 Hz therefore the large main power supplies have features of waveform play with trigger functionalities to enable electron beams ramp from 150 MeV to 3 GeV in 3 Hz. However, due to limited bandwidth of power supplies, different magnet loading will result in quite different phase lag for dipoles and four quadrupoles families. To improve tracking error between quadrupole to dipole readings, several strategies are developed and will be summarized in this report.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-MOPTY064  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPTY069 Control Interface and Functionality of TPS Booster Power Supply 1094
 
  • C.Y. Wu, J. Chen, Y.-S. Cheng, P.C. Chiu, K.T. Hsu, K.H. Hu, C.H. Huang, D. Lee, C.Y. Liao
    NSRRC, Hsinchu, Taiwan
 
  The TPS booster is a synchrotron with injection energy at 150 MeV and extraction energy at 3 GeV in 3 Hz. Booster main power supplies consist of one dipole power supply with maximum current 1200 Ampere and four quadrupole family power supplies with maximum current of 120/150 Ampere. The small power supply for booster corrector and sextupole is a low noise switching power supply with ± 10 Ampere current range. The TPS booster control environment is based on EPICS framework to support rich functionalities including power supply control, waveform management, operation supports, and so on. All power supplies support DC mode and 3 Hz ramping mode operation for TPS booster commissioning and operation. Efforts on control interface and functionality for TPS booster power supply will be summarizes.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-MOPTY069  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPTY070 Online RadFET Reader for Beam Loss Monitoring System 1097
 
  • C.H. Huang, J. Chen, Y.-S. Cheng, K.T. Hsu, K.H. Hu, D. Lee, C.Y. Wu
    NSRRC, Hsinchu, Taiwan
 
  To investigate the beam loss and its distribution during operation of synchrotron light sources at NSSRC, a sixteen-channel readout box is designed and implemented to read the threshold voltage of the RadFETs installed at accelerator tunnel. To simplify the design, the reader plays a role of remote I/O for EPICS IOC. The IOC collects voltage from readers distributed in the accelerator to deduce the integrated dose and dose rate. User interface is shown in the control console for real-time display and the archived data are processed off-line.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-MOPTY070  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPTY072 Beam Loss Study of TLS Using RadFETs 1103
 
  • C.H. Huang, J. Chen, Y.-S. Cheng, K.T. Hsu, K.H. Hu, D. Lee, C.Y. Wu
    NSRRC, Hsinchu, Taiwan
 
  To realize the beam loss during the operation of Taiwan light source, P-type radiation-sensing field-effect transistors are setup around the storage ring. A sixteen-channel readout box is used to read the threshold voltage of the radiation-sensing field-effect transistors during irradiation. The beam loss distribution and mechanism at the injection period, decay mode and top up injection for routing operation will be studied in this report.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-MOPTY072  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPTY076 Development of EPICS Applications for the Taiwan Light Source 1116
 
  • Y.-S. Cheng, J. Chen, P.C. Chiu, K.T. Hsu, C.H. Huang, C.Y. Liao
    NSRRC, Hsinchu, Taiwan
 
  The TLS (Taiwan Light Source) is a third generation of synchrotron light source, and it has been operated since 1993. The TLS control system is a proprietary design. It was performed minor upgrade several times to avoid obsolete of some system components and keep up-to-date during last two decades. The control system of the TPS project (Taiwan Photon Source) is based upon the EPICS framework. To save resources for TLS control system maintenance, adopt EPICS for newly developed and rejuvenated subsystems for some of the TLS control interfaces includes BPM system, insertion devices, bunch-by-bunch feedbacks, electronics instruments interface and so on. Some EPICS related applications have been developed, and EPICS graphical user interface is also operated at the TLS control consoles environment normally. Current system allowed two kinds of control environments working together. The efforts will be described at this report.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-MOPTY076  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPTY077 Control Interface of Pulse Magnet Power Supply for TPS Project 1120
 
  • C.Y. Wu, J. Chen, Y.-S. Cheng, C.-S. Fann, K.T. Hsu, S.Y. Hsu, K.H. Hu, C.H. Huang, D. Lee, C.Y. Liao, K.-K. Lin
    NSRRC, Hsinchu, Taiwan
 
  The TPS (Taiwan Photon Source) is low emittance 3 GeV synchrotron light source. The design and implementation of a pulse magnet power supply control system for beam injection and extraction were done. The EPICS embedded programmable logic controller (PLC) was applied to control pulse magnet power supply. The system comprises various input/output modules and a CPU module with built-in Ethernet interface. The control information (status of the power supply, ON, OFF, warn up, reset, reading/setting voltage, etc.) can be accessed remotely using EPICS client tools. The TPS timing system provide trigger signals for pulse magnet power supplies. The Ethernet-based oscilloscope is employed to observe current waveform of pulse magnet power supply with EPICS support. This paper describes control interface and operation GUI for the TPS pulse magnet power supply.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-MOPTY077  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)