Keyword: superconductivity
Paper Title Other Keywords Page
MOPME031 SolCalc: A Suite for the Calculation and the Display of Magnetic Fields Generated by Solenoid Systems solenoid, GUI, software, interface 445
 
  • M.L. Lopes
    Fermilab, Batavia, Illinois, USA
 
  SolCalc is a software suite that computes and displays magnetic fields generated by a three dimensional (3D) solenoid system. Examples of such systems are the Mu2e magnet system and Helical Solenoids for muon cooling systems. SolCalc was originally coded in Matlab, and later upgraded to a compiled version (called MEX) to improve solving speed. Matlab was chosen because its graphical capabilities represent an attractive feature over other computer languages. Solenoid geometries can be created using any text editor or spread sheets and can be displayed dynamically in 3D. Fields are computed from any given list of coordinates. The field distribution on the surfaces of the coils can be displayed as well. SolCalc was benchmarked against a well-known commercial software for speed and accuracy and the results compared favorably.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPME031  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPME058 Development of Thin Films for Superconducting RF Cavities SRF, scattering, lattice, power-supply 2406
 
  • S. Wilde, B. Chesca
    Loughborough University, Loughborough, Leicestershire, United Kingdom
  • A.N. Hannah, D.O. Malyshev, O.B. Malyshev, S.M. Pattalwar, R. Valizadeh
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • G.B.G. Stenning
    STFC/RAL/ISIS, Chilton, Didcot, Oxon, United Kingdom
 
  Superconducting coatings for superconducting radio frequency (SRF) cavities is an intensively developing field that should ultimately lead to acceleration gradients better than those obtained by bulk Nb RF cavities. ASTeC has built and developed experimental systems for superconducting thin-film deposition, surface analysis and measurement of Residual Resistivity Ratio (RRR). Nb thin-films were deposited by magnetron sputtering in DC or pulsed DC mode (100 to 350 kHz with 50% duty cycle) with powers ranging from 100 to 600 W at various temperatures ranging from room temperature to 800 °C on Si (100) substrates. The first results gave RRR in the range from 2 to 22 with a critical temperature Tc=~9.5 K. Scanning electron microscopy (SEM), x-ray diffraction (XRD), electron back scattering diffraction (EBSD) and DC SQUID magnetometry revealed significant correlations between the film structure, morphology and superconducting properties.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPME058  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRI076 Higher Order Mode Damping in Superconducting Spoke Cavities HOM, cavity, damping, higher-order-mode 2669
 
  • C.S. Hopper, J.R. Delayen
    ODU, Norfolk, Virginia, USA
 
  Parasitic higher order modes (HOMs) can be severely detrimental to the performance of superconducting cavities. For this reason, the mode spectrum and beam coupling strength must be examined in detail to determine which modes must be damped. One advantage of the spoke cavity geometry is that couplers can be placed on the outer body of the cavity rather than in the beam line space. We present an overview of the HOM properties of spoke cavities and methods for suppressing the most harmful ones.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPRI076  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRI078 Experimental Study of Surface RF Magnetic Field Enhancement Caused by Closely Spaced Protrusions cavity, klystron, vacuum, experiment 3949
 
  • F.Y. Wang, C. Adolphsen, J.P. Eichner, C.D. Nantista, L. Xiao
    SLAC, Menlo Park, California, USA
 
  The RF magnetic field enhancement between two closely spaced protrusions on a metallic surface has been studied theoretically. It is found that a large enhancement occurs when the field is perpendicular to the gap between the protrusions. This mechanism could help explain the melting that has been observed on cavity surfaces subjected to pulsed heating that would nominally be well below the melting temperature of the surface material. To test this possibility, an experiment was carried out in which a pair of copper “pins” was attached to the base plate of an X-band cavity normally used to study pulsed heating. Melting was observed between the pins when the predicted peak temperature was near or exceeded the copper melting temperature.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPRI078  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)