
A MULTI-CONDUCTOR TRANSMISSION LINE MODEL FOR THE BPMS 

T. Toyama, KEK/J-PARC, Tokai, Ibaraki, Japan 
  

Abstract 
A multi-conductor transmission line model for beam 

position monitors (BPMs) is developed for an accurate 
and efficient analysis. This method combines the two-
dimensional electrostatic analysis including beams in the 
transverse plane and the transmission line analysis in the 
longitudinal direction. The loads are also included in the 
boundary condition of the transmission line analysis. A 
problem can be solved self-consistently. Calculation of 
2D electrostatic fields can be easily performed with the 
boundary element method. The BPM response to a beam 
is compared with that to a stretched wire in this 
framework.  

INTRODUCTION 
When measuring the position sensitivity of BPMs with 

a stretched wire, a fundamental question might be 
whether it gives the same result as the beam will do. A 
simplified BPM response to a beam is usually explained 
with induced charges on the BPM wall where no 
discrepancy is assumed between the pipe wall and the 
electrodes. The beam at (x, y) induces a charge on the 
wall. The charge density σ(a, θ) is expressed as

σ (a,θ, r,φ) =
λB

2πa
a2 − r2

a2 + r2 − 2a rcos(θ −φ) .

The beam position is obtained by calculating, for 
example, 

x =
1

κ
⋅
σ (a, 0, r,φ)−σ (a,π / 2, r,φ)

σ (a, 0, r,φ)+σ (a,π / 2, r,φ)
 , 

by Δ/Σ calculation with θ = 0 and π/2. 
A typical stretched wire method is the setup where the 

beam is replaced by the wire. A conductor wire of the 
radius rW is stretched in the pipe. The power supply of a 
voltage V is connected at one end and the matching 
resistor at the other end. The charge on the wire in this 
case is  

λW =CW (x, y)V ,     

CW =
2πε0

cosh−1
rW

2 + a2 − x2 + y2( )
2rWa

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

.   
The induced charge density in this case is  

   
′σ (a,θ, r,φ) =

Cw(x, y)V

2πa
a2 − r2

a2 + r2 − 2a rcos(θ −φ) .  
Therefore the induced charge density on the wall is 
different from that due to the beam. The estimated 
positions with Δ/Σ methods, however, agree with each 

other because the terms, Cw, in the numerator and 
denominator vanish by division. In real BPMs the 
structure is not simple as the above example. Such a 
practical structure is analyzed with multiconductor 
transmission line model for both the beam and the wire 
case. 

MODELING OF BPMS 
The system is defined as follows. Pickups in a beam 

pipe, both of which are longitudinally uniform and made 
of a perfect conductor, are terminated by some load 
impedances at some longitudinal points. A beam runs 
longitudinally with ultra-relativistic velocity. We neglect 
higher order modes, which assumes only TEM modes in 
the pipe. The analysis of the wire case is an application of 
[1], whereas we need to re-examine for the above 
configuration with the beam. 

Solution of the Maxwell Equation with a Beam 
Using the coordinate system, x, y, z where the z-

direction coincides the beam and pipe axis, x and y are in 
the transverse plane. Under the above conditions the 
Maxwell’s equations result in the Poisson equation for the 
transverse plane and a multi-conductor transmission line 
equation for the longitudinal plane. The electric and 
magnetic fields have the relation: 

E(x, y, z) = c×B(x, y, z) .   (1) 
The electric fields can be expressed as 

E(x, y, z) = �E(x,y) ⋅ e∓ jkz .   (2) 
and obey the 2D Poisson equation: 

ΔV (x,y)= −
ρ(x, y)

ε0

.   (3) 

Using the potential coefficients and the line charge 
densities ln and l0 of n-th conductor and the beam, 

V1

�
Vn

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

=

p11 � p1n

� � �
pn1 � pnn

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

λ1

�
λn

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

+

p10

�
pn0

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

λ0

= pλ +p0λ0,

 (4) 

 the traveling waves are expressed as [2] 

V+ e− jkz =
1

c
p I+ e− jkz+p0λ0 e− jkz ,  (5) 

V− e+ jkz = −
1

c
p I− e+ jkz ,   (6)

 where l and l0 are the charge densities of the conductors 
and beam, V+ and V- (I+ and I-) are the voltages (currents) 
of forward and backward waves, k the wave number 
(=w/c), c the light velocity. The time variation is assumed 
to be e jωt . The beam propagating forward z-direction is ____________________________________________  
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expressed as e-jkz. The beam affects only the forward 
wave as Eq. 5. There is subtlety that concerns the integral 
on the boundaries in the transverse plane. The boundary 
conditions are 

V+ +V−= −R0(I+ + I− ) ,   (7) 
V+ e− jk�+V− e+ jk� =R�(I+ e− jk�+ I− e+ jk� ) , (8) 

if the terminations are done with the impedances, R0 and 
R� , at z = 0 and � . As an example the geometry of one 
electrode and the beam is shown in Fig. 1. Other 
configurations as the center termination and so on can be 
also included in the boundary conditions in a similar 
manner. 

When the upstream termination is an open circuit as the 
3-50 BT BPM (Fig. 3), and R� = R�E,  the voltage at z = 
�  is  

 

V(�)

= cosk� ⋅E+ j sink� ⋅cR�q[ ]−1
j e− jk�sink� ⋅R�q ⋅p0I0   (9) 

where E is the unit matrix, q = p−1
, and I0 the beam 

current.  
As described above the boundary conditions are 

included in the formulation without artificial 
manipulations or non-physical assumption as grounded 
electrodes. 

Figure 1: Schematic of one conductor and a beam. 

Low Frequency Limit 
At the low frequency ( k� = ω� / c <<1 ) Eq. 9 can be 

approximated up to the first order of k� . For the pickup 
with one conductor the voltage reads 

V (�) =
jω�C

jω�C +
1
R�

p0

c
I0 .   (10) 

For the pickup with multi-conductor the voltage reads 

V(�)= jω�q+R�
−1⎡

⎣
⎤
⎦
−1
jω�q p0

c
I0 .  (11) 

The capacitance C in Eq. 10 corresponds to the 
coefficients of capacitances and inductions q in Eq. 11, 
the termination load R�  to the matrix R� , the coefficient 
of potential p0 to p0, and division to matrix inversion.  

Solution for the Stretched Wire Method 
Applying the ordinary MTL theory to the stretched 

wire method as Fig. 2, the following equation is reduced, 
V±(z) = V̂± e∓ jkz ,    (12) 

I±(z) = Î± e∓ jkz = ±Z−1V̂± e∓ jkz   (13) 

with the boundary condition 
V̂+ + V̂−=VS −Z0(Î+ + Î− ) ,   (14) 

V̂+ e− jk�+ V̂− e+ jk� =Z�(Î+ e− jk�+ Î− e+ jk� ) . (15) 
For example, the case of a two-conductor transmission 

line with one electrode and one wire, the impedance,Z , 
obeys 

 Z−1 = cC = c
CBPM −ΔC

−ΔC CW

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥ ,  (16) 

where c, C ,CBPM ,CW and −ΔC  are the light velocity, 
the capacitance matrix, the electrode capacitance, the wire 
capacitance and the coupling between the wire and the 
electrode, respectively. At the terminals Z0 , Z� and VS  
are expressed as  

 Z0 =
R0 0

0 ZC

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
, Z� =

R� 0

0 ZC

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
,  

 VS =
0
V0

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
,  

with R0 , R� , ZC  and V0  defined in Fig. 2. The limiting 
case of ΔC <<CBPM ,  ω� / c <<1,  R0 >>1 , the output 
voltage of the electrode is obtained as 

 VBPM (�) ≈
jω�CBPM

jω�CBPM +1/ R�
⋅
ZC  ΔC
CBPM

IW (�) , (17) 

where IW (�)  is the wire current at z = � . This equation is 
the wire-method counterpart of Eq. (10). It should be 
noted that IW (�)  is position dependent whereas I0  is the 
constant.  

 

Figure 2: Schematic of one electrode and one wire. 

 

MODELING AND ANALYSIS OF THE 3-
50BT BPM 

There are 14 BPMs in the “3-50BT”, the beam 
transport line from the 3 GeV RCS to the 50 GeV main 
ring [3] [4]. The beam from the RCS is collimated by the 
collimator situated upstream of the 3-50 BT. Then the 
beam is bended down to fit the MR tunnel level.  

BPM Structure 
The schematic of the BPMs with inner diameter of 200 

mm is shown in Fig. 3. The opening angle is 60 degree 
and the gap between the electrode and pipe wall is 1 mm. 
The loads, impedance matching transformers, are set at 
the downstream end of the electrodes. 
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Figure 3: Schematic of the 3-50 BPM.  

Numerical Calculation with BEM 
The coefficients of capacitance and induction q, and 

the coefficient of potential p0 are obtained using the 
boundary element method (BEM) with two-dimensional 
BPM geometry and the beam point charge [5]. These 
quantities are independent on a conductor’s specific 
boundary condition. Using Eq. 9 we obtain the BPM 
response VBPM (�) / I0 . In this calculation we use the same 
q, while varying p0 depending on the beam position (x,y).  

Comparison between the Beam and the 
Stretched-wire Measurement 

The stretched-wire measurement described in [1] is 
modeled according to Figs. 2 and 3. In this case the 
capacitance matrix C is calculated with BEM including 
the wire. Therefore C for each wire position should be 
recalculated in contrast to the beam case where q does not 
depend on the beam position. The numerical calculation 
of four electrodes and the wire was performed without 
approximation used for Eq. (17). 

The results are shown in Figs. 4 and 5. Red curves 
show the responses to the beam and the black dots the 
responses to the wire. The responses of the left and upper
electrodes, VBPM (�) / IW (�) , are depicted in Fig 4 (a) and 
(b), respectively. The values are normalized to 1 at x = 0. 
The plots with the beam and the wire disagree at large x. 
On the other hand normalized results with Δ/Ζ in Fig. 5 
agree with each other, within a few 10 μm in this 
calculation. This is with in our precision requirement. 

 

  
   (a)                                        (b) 

Figure 4: BPM responses to the beam or wire. (a) Left 
electrode response. (b) Upper electrode response. Red 
lines: the response to the beam. Black dots: the response 
to the wire.  

 

 
Figure 5: Δ/Σ response to the beam or wire. Red lines: 
the response to the beam. Black dots: the response to the 
wire. 

CONCLUSION 
The analysis method for multi-conductor pickups, in 

which a 2D electrostatic analysis including beams is 
performed in the transverse plane and the transmission 
line analysis is performed in the longitudinal direction, is 
applied to the BPM with four electrodes at the 3-50BT in 
J-PARC. The BPM responses to the beam and the wire 
are compared using this method. As expected with the 
simple electrostatic model, even in a practical structure as 
four electrodes the situation dose not change within a 
precision, in which Δ/Σ calculations agree although each 
electrode response differs each other. This result supports 
the validity of the stretched wire method for BPM 
calibration in this case. 
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