Author: Yakovlev, V.P.
Paper Title Page
TUOAB102 Project X Injector Experiment: Goals, Plan and Status 1093
 
  • A.V. Shemyakin, S.D. Holmes, D.E. Johnson, M. Kaducak, R.D. Kephart, V.A. Lebedev, C.S. Mishra, S. Nagaitsev, N. Solyak, R.P. Stanek, V.P. Yakovlev
    Fermilab, Batavia, USA
  • D. Li
    LBNL, Berkeley, California, USA
  • P.N. Ostroumov
    ANL, Argonne, USA
 
  Funding: This work was supported by the U.S. DOE under Contract No.DE-AC02-07CH11359
A multi-MW proton facility, Project X, has been proposed and is currently under development at Fermilab. We are carrying out a program of research and development aimed at integrated systems testing of critical components comprising the front end of the Project X. This program is being undertaken as a key component of the larger Project X R&D program. The successful completion of this program will validate the concept for the Project X front end, thereby minimizing a primary technical risk element within Project X. Integrated systems testing, known as the Project X Injector Experiment (PXIE), will be accomplished with a new test facility under construction at Fermilab and will be completed over the period FY12- 17. PXIE will include an H ion source, a CW 2.1-MeV RFQ and two superconductive RF (SRF) cryomodules providing up to 25 MeV energy gain at an average beam current of 1 mA (upgradable to 2 mA). Successful systems testing will also demonstrate the viability of novel front end technologies that are expected find applications beyond Project X.
 
slides icon Slides TUOAB102 [1.615 MB]  
 
WEPWO053 SRF Development for a MW Proton Source at Fermi National Accelerator Laboratory 2423
 
  • T.T. Arkan, C.M. Ginsburg, A. Grassellino, S. Kazakov, T.N. Khabiboulline, T.H. Nicol, Y. Orlov, T.J. Peterson, L. Ristori, A. Romanenko, A.M. Rowe, N. Solyak, A.I. Sukhanov, V.P. Yakovlev
    Fermilab, Batavia, USA
 
  Funding: Work supported by the US Department of Energy
Fermilab is planning a megawatt-level proton beam facility utilizing niobium superconducting RF (SRF) cavities. Project X at Fermilab will eventually provide high-intensity beams for research into the nature of matter at the "intensity frontier". Research and development in several areas will bring the SRF technology to the level needed for this application. Among developments in SRF being pursued with our national and international collaborators are 162.5 MHz half-wave resonators, 325 MHz single-spoke resonators, and two types of elliptical multi-cell 650 MHz cavities. Performance requirements for these cavities and cryomodules in continuous wave (CW) operation are extremely stringent in order to provide high accelerating gradients with acceptable total cryogenic load and overall accelerator capital and operating costs. This paper presents some highlights of the SRF R&D program and proton linac development work at Fermilab.
 
 
WEPWO056 Update of the Mechanical Design of the 650 MHZ β=0.9 Cavities for Project X 2432
 
  • I.V. Gonin, M.H. Awida, M.H. Foley, C.J. Grimm, T.N. Khabiboulline, Y.M. Pischalnikov, V.P. Yakovlev
    Fermilab, Batavia, USA
 
  Five-cell elliptical 650 MHz β=0.9 cavities to accelerate 1 mA of average H beam current in the range 520-3000 MeV of the Project X Linac are currently planned. We will present the results of optimization of mechanical design of cavities with their Helium Vessel. We discuss the efforts to optimize the mechanical stability of the cavity versus the Helium bath pressure fluctuations, cavity tunability. We present also modal and thermal analysis; discuss tuner options and other issues.  
 
WEPWO057 Update of SSR2 Cavities Design for Project X and RISP 2435
 
  • M. Merio, M.H. Awida, P. Berrutti, I.V. Gonin, T.N. Khabiboulline, D. Passarelli, Y.M. Pischalnikov, L. Ristori, N. Solyak, V.P. Yakovlev
    Fermilab, Batavia, USA
 
  Funding: Operated by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy.
Single spoke resonators SSR2 (f=325 MHz) are under development at Fermilab. These cavities can meet requirements of Project X (FNAL) and RISP (Korea). The initial design of SSR2 cavities has been modified and optimized in order to satisfy the necessities of both projects. This paper will discuss the RF optimization for a single spoke resonator with a 50 mm beam pipe aperture and an optimal beta of 0.51. Further, the approach to the mechanical design of the cavity will be presented together with the proposed helium vessel. The latter is intended to guarantee a low He pressure sensitivity df/dp of the entire jacketed SSR2 and actively control the microphonics.
 
 
WEPWO082 Ferroelectric Based High Power Tuner for L-band Accelerator Applications 2486
 
  • A. Kanareykin
    Euclid TechLabs, LLC, Solon, Ohio, USA
  • S. Kazakov, V.P. Yakovlev
    Fermilab, Batavia, USA
  • A.B. Kozyrev
    LETI, Saint-Petersburg, Russia
  • E. Nenasheva
    Ceramics Ltd., St. Petersburg, Russia
 
  Funding: US Department of Energy
With this paper, we present our recent breakthrough with a new fast ferroelectric tuner development. The tuner is based on BST(M) ferroelectric elements (ε~150), which are designed to be used as the basis for L-band accelerator components intended for ERL, ILC, Project X and other applications. These new ferroelectric elements are to be fabricated for the new fast active tuner for SC cavities that can operate in air at low biasing DC fields. Note there were no reliable results on the long-term piezo actuators operations in CW regime. Specific features of ERL, ILC and Project X accelerator technology and challenges of the designs are high magnitude and phase stability of its operations. Mechanical vibrations, or microphonics affect the SRF resonator, while the ferroelectric tuners have shown extremely high tuning speed. We have demonstrated successful mitigation of the residual effects on the ferroelectric-metal interface along with the acceptable level of the overall loss factor of the tuner element. A new concepts of a tuning element based on low dielectric constant ferroelectrics along with fabrication technology of these new BST(M) ferroelectric elements will be presented.
 
 
WEPFI070 Design of RFQ Coupler for PXIE Project 2854
 
  • S. Kazakov, T.N. Khabiboulline, V. Poloubotko, O. Pronitchev, V.P. Yakovlev
    Fermilab, Batavia, USA
 
  Design of new coupler for PXIE RFQ is reported. Two couplers are supposed to deliver ~ 100 kW total CW RF power to RFQ at 162.5 MHz. Coupler has a magnetic loop coupling with the RFQ. Nevertheless it allows to apply a HV bias to suppress a multipactor due to original design of the coupling loop. Results of RF, multipactor and thermal simulations are presented.  
 
THPWO091 Staging Scenarios for Project-X 3972
 
  • N. Solyak, J.-P. Carneiro, V.A. Lebedev, S. Nagaitsev, J.-F. Ostiguy, A. Saini, A. Vivoli, V.P. Yakovlev
    Fermilab, Batavia, USA
 
  Funding: US DOE under contract DE-AC02-76CH03000.
Project-X is a high intensity proton source in development at Fermilab. At its heart is a linac based on superconducting technology comprising two distinct sections. The first one operates in CW mode and delivers beam with a flexible time structure to simultaneous experimental programs at 1 and 3 GeV. The second one operates in pulsed mode and accelerates a modest fraction (5%) of the beam from 3 GeV to 8 GeV for accumulation in the existing Main Injector complex. In an era of constrained budgets, construction in stages -with each stage capable of supporting worthy scientific programs - may be advantageous. Requirements for each program, coupled to the physical constraints imposed by the Fermilab site have led to a few possible scenarios, which are discussed in this contribution. In particular, we examine the implications of introducing bends in the linac at 1 and 3 GeV in terms of overall performance, flexibility and cost.
 
 
THPWO092 Update of Beam Optics and SRF Cavities for Project X 3975
 
  • T.N. Khabiboulline, P. Berrutti, V.A. Lebedev, A. Lunin, T.H. Nicol, J.-F. Ostiguy, T.J. Peterson, L. Ristori, A. Saini, N. Solyak, V.P. Yakovlev
    Fermilab, Batavia, USA
 
  The Project X staging [1] requires reconsideration of the beam optics and thus, the SRF system for the 3 GeV CW linac of the Project X. The revised beam optics is presented in the paper as well as revised cavity design for SSR2 section and a new concept of the linac segmentation. The new versions for the Project X cryo-modules for the SSR2 section, low-beta 650 MHz section and high-beta 650 MHz section are discussed. The beam extraction scheme at 1 GeV is discussed also. [1] S. Holmes, “Project X News, Strategy, Meeting Goals,” 2012 Fall Project X Collaboration Meeting, 27-28 November 2012, Fermilab.