Author: Borburgh, J.
Paper Title Page
MOPFI052 A New Lead Ion Injection System for the CERN SPS with 50 ns Rise Time 398
  • B. Goddard, O. Aberle, J. Borburgh, E. Carlier, K. Cornelis, L. Ducimetière, L.K. Jensen, T. Kramer, D. Manglunki, A. Mereghetti, V. Mertens, D. Nisbet, B. Salvant, L. Sermeus
    CERN, Geneva, Switzerland
  The LHC High Luminosity upgrade project includes a performance upgrade for heavy ions. One of the present performance limitations is the rise time of the SPS injection kicker system, which imposes a spacing of at least 220 ns between injected bunch trains at the operational rigidity. A reduction of this rise time to 50 ns for lead ions is requested as part of the suite of measures needed to increase the present design performance by a factor three. A new injection system based on a fast pulsed septum and a fast kicker has been proposed to fulfil this rise time requirement, and to meet all the constraints associated with the existing high intensity proton injection in the same region. This paper describes the concept and the required equipment parameters, and explores the implications of such a system for SPS operation.  
MOPFI054 Upgrades for the CERN PSB-TO-PS Transfer at 2 GeV 404
  • W. Bartmann, J. Borburgh, J.R.T. Cole, S.S. Gilardoni, B. Goddard, O. Hans, M. Hourican, L. Sermeus, R. Steerenberg
    CERN, Geneva, Switzerland
  • C.H. Yu
    IHEP, Beijing, People's Republic of China
  The CERN PS Booster extraction energy will be upgraded from 1.4 to 2.0 GeV to alleviate the direct space charge tune shift in the PS. The focussing structure of the transfer line will be modified in order to better match the optics between the PSB and the PS. The optics of the PS at injection and, with it, of the transfer line can be adapted to reduce the continuous losses from the already injected and circulating beam bumped towards the septum. Experimental results of the optics optimisation and probing the injection kicker gap will be shown.  
MOPFI061 Concept for Elena Extraction and Beam Transfer Elements 422
  • J. Borburgh, B. Balhan, W. Bartmann, T. Fowler, L. Sermeus, G. Vanbavinckhove
    CERN, Geneva, Switzerland
  • R.A. Baartman
    TRIUMF, Vancouver, Canada
  • D. Barna
    University of Tokyo, Tokyo, Japan
  • V. Pricop
    Transilvania University of Brasov, Brasov, Romania
  In 2011 the ELENA decelerator was approved as a CERN project. Initially one extraction was foreseen, which should use a kicker and a magnetic septum which can be recuperated from an earlier installation. Since then a second extraction has been approved and a new solution was studied using only electric fields to extract the beam. This will be achieved by fast pulsing a separator, allowing single-bunch but also a full single-turn extraction from ELENA towards the experiments. The extraction and transfer requirements of ELENA are described, followed by the principal differences between the magnetic and electric field concepts. The design of electrostatic focussing and bending devices for the transfer lines will be presented. Finally the field quality which can be achieved with the separator and the concept of its power supply will be discussed.  
MOPWO025 Optics and Protection of the Injection and Extraction Regions of the CLIC Damping Rings 939
  • R. Apsimon, B. Balhan, M.J. Barnes, J. Borburgh, B. Goddard, Y. Papaphilippou, J.A. Uythoven
    CERN, Geneva, Switzerland
  The optics design of the injection and extraction regions for the CLIC damping rings is presented. The design defines the parameters for the kicker magnets and septa in these regions and has been optimised to minimise the length of the insertions within the parameter space of the system. Failure modes of the injection and extraction elements are identified and their severity assessed. Protection elements for the injection and extraction regions are optimised based on the conclusions of the failure mode analysis.  
WEPEA042 The PS Upgrade Programme: Recent Advances 2594
  • S.S. Gilardoni, S. Bart Pedersen, C. Bertone, N. Biancacci, A. Blas, D. Bodart, J. Borburgh, P. Chiggiato, H. Damerau, S. Damjanovic, J.D. Devine, T. Dobers, M. Gourber-Pace, S. Hancock, A. Huschauer, G. Iadarola, L.A. Lopez Hernandez, A. Masi, S. Mataguez, E. Métral, M.M. Paoluzzi, S. Persichelli, S. Pittet, S. Roesler, C. Rossi, G. Rumolo, B. Salvant, R. Steerenberg, G. Sterbini, L. Ventura, J. Vollaire, R. Wasef, C. Yin Vallgren
    CERN, Geneva, Switzerland
  • M. Migliorati
    University of Rome "La Sapienza", Rome, Italy
  The LHC Injectors Upgrade project (LIU) has been initiated to improve the performances of the existing injector complex at CERN to match the future requirements of the HL-LHC. In this framework, the Proton Synchrotron (PS) will undergo fundamental changes for many of its main systems: the injection energy will be increased to reduce space-charge effects, the transverse damper will be improved to cope with transverse instabilities the RF systems will be upgraded to accelerate higher beam intensity and brightness. These hardware improvements are triggered by a series of studies meant to identify the most critical performance bottlenecks, like space charge, impedances, longitudinal and transverse instabilities, as well as electron-cloud. Additionally, alternative production schemes for the LHC-type beams have been proposed and implemented to circumvent some of the present limitations. A summary of the most recent advances of the studies, as well as the proposed hardware improvements is given.  
WEPEA060 Plans for the Upgrade of CERN's Heavy Ion Complex 2645
  • D. Manglunki, M. E. Angoletta, H. Bartosik, A. Blas, D. Bodart, M.A. Bodendorfer, T. Bohl, J. Borburgh, E. Carlier, J.-M. Cravero, H. Damerau, L. Ducimetière, A. Findlay, R. Garoby, S.S. Gilardoni, B. Goddard, S. Hancock, E.B. Holzer, J.M. Jowett, T. Kramer, D. Kuchler, A.M. Lombardi, Y. Papaphilippou, S. Pasinelli, R. Scrivens, G. Tranquille
    CERN, Geneva, Switzerland
  To reach a luminosity higher than 6×1027 Hz/cm2 for Pb-Pb collisions, as expected by the ALICE experiment after its upgrade during the 2nd Long LHC Shutdown (LS2), several upgrades will have to be performed in the CERN accelerator complex, from the source to the LHC itself. This paper first details the present limitations and then describes the strategy for the different machines in the ion injector chain. Both filling schemes and possible hardware upgrades are discussed.  
THPEA047 Diamond Particle Detector Properties during High Fluence Material Damage Tests and their Future Applications for Machine Protection in the LHC 3249
  • F. Burkart, J. Blanco, J. Borburgh, B. Dehning, M. Di Castro, E. Griesmayer, A. Lechner, J. Lendaro, F. Loprete, R. Losito, S. Montesano, R. Schmidt, D. Wollmann, M. Zerlauth
    CERN, Geneva, Switzerland
  • E. Griesmayer
    CIVIDEC Instrumentation, Wien, Austria
  Experience with LHC machine protection (MP) during the last three years of operation shows that the MP systems sufficiently protect the LHC against damage in case of failures leading to beam losses with a time constant exceeding 1ms. An unexpected fast beam loss mechanism, called UFOs, was observed, which could potentially quench superconducting magnets. For such fast losses, but also for better understanding of slower losses, an improved understanding of the loss distribution within a bunch train is required. Diamond particle detectors with bunch-by-bunch resolution and high dynamic range have been developed and successfully tested in the LHC and in experiments to quantify the damage limits of LHC components. This paper will focus on experience gained in use of diamond detectors. The properties of these detectors were measured during high-fluence material damage tests in CERN's HiRadMat facility. The results will be discussed and compared to the cross-calibration with FLUKA simulations. Future applications of these detectors in the LHC to understand beam losses and to improve the protection against fast particle losses will be discussed.  
THPFI002 Construction and Initial Tests of the Electrostatic Septa for MedAustron 3288
  • J. Borburgh, R.A. Barlow, C. Boucly, A. Prost
    CERN, Geneva, Switzerland
  • U. Dorda, T. Kramer, T. Stadlbauer
    EBG MedAustron, Wr. Neustadt, Austria
  For the MedAustron facility under construction in Wiener Neustadt/Austria, two electrostatic septa are built in collaboration with CERN. These septa will be used for the multi-turn injection of protons and ions, as well as for the slow extraction from the synchrotron. The power supplies are designed to combine the required precision with the capability to cycle sufficiently fast to keep up with the machine cycle. The septa are being assembled at CERN. Initial tests have been done on the remote displacement system to validate its precision and communication protocol with the MedAustron control system. Subsequently the septa are tested for vacuum performance and then HV conditioned. The construction of the septa, the requirements of the power supplies and the high voltage circuit will be described. Results of the initial laboratory tests, prior to installation in the accelerator, will be given.  
THPWO078 Status of the Upgrade of the CERN PS Booster 3939
  • K. Hanke, O. Aberle, M. E. Angoletta, W. Bartmann, S. Bartolome, E. Benedetto, C. Bertone, A. Blas, P. Bonnal, J. Borburgh, D. Bozzini, A.C. Butterworth, C. Carli, E. Carlier, J.R.T. Cole, P. Dahlen, M. Delonca, T. Dobers, A. Findlay, R. Froeschl, J. Hansen, D. Hay, S. Jensen, J.-M. Lacroix, P. Le Roux, L.A. Lopez Hernandez, C. Maglioni, A. Masi, G.W. Mason, S.J. Mathot, B. Mikulec, Y. Muttoni, A. Newborough, D. Nisbet, S. Olek, M.M. Paoluzzi, A. Perillo-Marcone, S. Pittet, B. Puccio, V. Raginel, B. Riffaud, I. Ruehl, A. Sarrió Martínez, J. Tan, B. Todd, V. Venturi, W.J.M. Weterings
    CERN, Geneva, Switzerland
  The CERN PS Booster (PSB) is presently undergoing an ambitious consolidation and upgrade program within the frame of the LHC Injectors Upgrade (LIU) project. This program comprises a new injection scheme for H ions from CERN’s new Linac4, the replacement of the main RF systems and an energy upgrade of the PSB rings from 1.4 to 2.0 GeV which includes the replacement of the main magnet power supply as well as the upgrade of the extraction equipment. This paper describes the status and plans of this work program.