Author: Bourtembourg, R.
Paper Title Page
MOBPL02 TANGO Kernel Development Status 27
 
  • R. Bourtembourg, J.M. Chaize, T.M. Coutinho, A. Götz, V. Michel, J.L. Pons, E.T. Taurel, P.V. Verdier
    ESRF, Grenoble, France
  • G. Abeillé, N. Leclercq
    SOLEIL, Gif-sur-Yvette, France
  • S. Gara
    NEXEYA Systems, La Couronne, France
  • P.P. Goryl
    3controls, Kraków, Poland
  • I.A. Khokhriakov
    HZG, Geesthacht, Germany
  • G.R. Mant
    STFC/DL, Daresbury, Warrington, Cheshire, United Kingdom
  • J. Moldes
    ALBA-CELLS Synchrotron, Cerdanyola del Vallès, Spain
  • B. Plötzeneder
    ELI-BEAMS, Prague, Czech Republic
 
  Funding: On behalf of the TANGO Controls Collaboration
The TANGO Controls Framework continues to improve. This paper will describe how TANGO kernel development has evolved since the last ICALEPCS conference. TANGO kernel projects source code repositories have been transferred from subversion on Sourceforge.net to git on GitHub.com. Continuous integration with Travis CI and the GitHub pull request mechanism should foster external contributions. Thanks to the TANGO collaboration contract, parts of the kernel development and documentation have been sub-contracted to companies specialized in TANGO. The involvement of the TANGO community helped to define the roadmap which will be presented in this paper and also led to the introduction of Long Term Support versions. The paper will present how the kernel is evolving to support pluggable protocols - the main new feature of the next major version of TANGO.
 
video icon Talk as video stream: https://youtu.be/t6L6hj0rNDc  
slides icon Slides MOBPL02 [5.754 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2017-MOBPL02  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPHA139 ESRF Ramping Injector Power Supply Controlled by Tango 739
 
  • P.V. Verdier, R. Bourtembourg, J-F. B. Bouteille, P. Falaise, J.M. Koch
    ESRF, Grenoble, France
 
  A new design of ESRF booster power supply system has been developed and installed. A multiple power supplies control through network including real time control is now operational at ESRF. It manages 4 power supplies to generate 3 waveforms defined with 3x1600 values in a setpoint file. The power supplies states are managed by PLCs. The ramping waveforms are managed by a real time program running on a FPGA board. And a high level control on top of them is assumed by a TANGO multiple classes system. This paper presents how these three levels of controls are interlinked and show the results achieved  
poster icon Poster TUPHA139 [1.214 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2017-TUPHA139  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPHA166 New Developments for the HDB++ TANGO Archiving System 801
 
  • L. Pivetta, G. Scalamera, G. Strangolino, L. Zambon
    Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Italy
  • R. Bourtembourg, S. James, J.L. Pons, P.V. Verdier
    ESRF, Grenoble, France
  • S. Rubio-Manrique
    ALBA-CELLS Synchrotron, Cerdanyola del Vallès, Spain
 
  TANGO HDB++ is a high performance event-driven archiving system which stores data with micro-second resolution timestamps, using archivers written in C++. HDB++ currently supports MySQL and Apache Cassandra back-ends but could be easily extended to support additional back-ends. Since the initial release many improvements and new features have been added to the HDB++. In addition to bug-fixes and optimizations, the support for context-based archiving allows to define an archiving strategy for each attribute, specifying when it has to be archived or not. Temporary archiving is supported by means of a time-to-live parameter, available on a per-attribute basis. The Cassandra back-end is using Cassandra TTL native feature underneath to implement the time-to-live feature. With dynamic loading of specific libraries switching back-ends can be done on-the-fly and is as simple as changing a property. Partition and maintenance scripts are now available for HDB++ and MySQL. The HDB++ tools, such as extraction libraries and GUIs, followed HDB++ evolution to help the user to take full advantage of the new features.  
poster icon Poster TUPHA166 [1.957 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2017-TUPHA166  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THCPL05 TANGO Heads for Industry 1195
 
  • A. Götz, R. Bourtembourg, J.M. Chaize, T.M. Coutinho, V. Michel, J.L. Pons, P.V. Verdier
    ESRF, Grenoble, France
  • S. Gara
    NEXEYA Systems, La Couronne, France
  • P.P. Goryl
    3controls, Kraków, Poland
  • I.A. Khokhriakov
    HZG, Geesthacht, Germany
  • G.R. Mant
    STFC/DL, Daresbury, Warrington, Cheshire, United Kingdom
  • A. Stanik
    Prevac, Rogow, Poland
  • S. Viénot
    JYSE, Grenoble, France
 
  The TANGO Controls Framework* continues to mature and be adopted by new sites and applications. This paper will describe how TANGO has moved closer to industry with the creation of startups and addressing industrial use cases. It will describe what progress has been made since the last ICALEPCS in 2015 to ensure the sustainability of TANGO for scientific and industrial users. It will present TANGO web based technologies and the deployment of TANGO in the cloud. Furthermore it will describe how the community has re-organised itself to fund and improve code sharing, documentation, code quality assurance and maintenance.
* http://tango-controls.org
 
video icon Talk as video stream: https://youtu.be/O-_JLDN4BSg  
slides icon Slides THCPL05 [9.769 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2017-THCPL05  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
FRAPL07 The ESRF's Extremely Brilliant Source - a 4th Generation Light Source 2010
 
  • J.M. Chaize, R. Bourtembourg, F. Epaud, A. Götz, S. James, G. Mugerin, F. Poncet, J.L. Pons, N.T. Tappret, E.T. Taurel, P.V. Verdier
    ESRF, Grenoble, France
 
  After 20 years of operation, the ESRF has embarked upon an extremely challenging project - the Extremely Brilliant Source (ESRF - EBS) . The goal of this project is to construct a 4th generation light source storage ring inside the existing 844m long tunnel. The EBS will increase the brilliance and coherence by a factor of 100 with respect to the present ESRF storage ring. A major challenge is to keep the present ring operating 24x7 while designing and pre-constructing all the elements of the new ring. This is the first time a 4th generation light source will be constructing inside an existing tunnel. This paper concentrates on the control system aspects. The control system is 100% TANGO based. The paper will list the main challenges of the new storage ring like the Hot Swap Powersupply, the new timing system, how reliable operation was maintained while modernizing the injector control system and preparing the new storage ring control system, the new historical database, and how extensive use was made of software simulators achieve this.
http://www.esrf.fr/files/live/sites/www/files/about/upgrade/documentation/whitepaper-upgrade-phaseII.pdf
P. Raimondi, "The ESRF Low Emittance Upgrade", IPAC'16, , Busan, Korea, May 2016, Paper WEXA01
 
video icon Talk as video stream: https://youtu.be/Wtocf0pieP0  
slides icon Slides FRAPL07 [9.634 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2017-FRAPL07  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)