Keyword: storage-ring
Paper Title Other Keywords Page
MOC3O05 NSLS-II Fast Orbit Feedback System feedback, injection, FPGA, operation 34
 
  • Y. Tian, W.X. Cheng, L.R. Dalesio, J.H. De Long, K. Ha, L. Yu
    BNL, Upton, Long Island, New York, USA
  • W.S. Levine
    UMD, College Park, Maryland, USA
 
  This paper presents the NSLS-II fast orbit feedback (FOFB) system, including the architecture, the algorithm and the commissioning results. A two-tier communication architecture is used to distribute the 10kHz beam position data (BPM) around the storage ring. The FOFB calculation is carried out in field programmable gate arrays (FPGA). An individual eigenmode compensation algorithm is applied to allow different eigenmodes to have different compensation parameters. The system is used as a regular tool to maintain the beam stability at NSLS-II.  
slides icon Slides MOC3O05 [10.295 MB]  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPGF023 Update of Power Supply Control System at the SAGA Light Source Storage Ring controls, PLC, target, power-supply 137
 
  • Y. Iwasaki, T. Kaneyasu, S. Koda, Y. Takabayashi
    SAGA, Tosu, Japan
 
  The update of control system at the SAGA Light Source storage ring power supplies is in progress for improving the ramp-up speed (from 255 MeV to 1.4 GeV) and for easily changing the stored beam energy. By replacing the CPU unit of PLC used for control of the power supplies, the ramp-up time was reduced from 4 to 2 minutes in a test bench prepared for the upgrade system. Currently the allowable beam energy is restricted to some fixed values in the ramp-up operation due to the original specification of the PLC ladder program. To operate storage ring at an arbitrary energy, the algorism used in the PLC program has been improvement. Energy dependent measurements (betatron-tune, beam size, and beam half-lifetime) will be carried out by using the updated control system. The upper layer of the control system using the National Instrument LabVIEW and ActiveXCA was also reconstructed for flexible GUI.  
poster icon Poster MOPGF023 [3.874 MB]  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPGF113 Controls and Interlocks for the New Elettra Super Conducting Wiggler controls, vacuum, TANGO, wiggler 342
 
  • L. Pivetta, F. Giacuzzo, G. Scalamera, D. Vittor
    Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Italy
 
  During the last two years, triggered by the construction of the XRD2 beamline, and to comply with the top-up operations, a complete refurbishment of the Elettra Super Conducting Wiggler (SCW) has been carried out. Alongside with the mechanical, cryogenic and electrical components, also the electronics, the control and interlock systems have been upgraded. The MVME5110 PowerPC single board computer, which is a standard in the Elettra control system, has been adopted, as well as RS232 communication modules, analog to digital converters and digital I/O lines. In order to cope with the high output power of the SCW, up to18 KW, the interlock system, protecting both the wiggler and the beamline front-end, has been completely redesigned. The control system software has been re-written from scratch using the TANGO software framework. The complete system has been tested during the second half of 2014 and is now fully operational.  
poster icon Poster MOPGF113 [0.667 MB]  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPGF147 Realization of a Concept for Scheduling Parallel Beams in the Settings Management System for FAIR controls, operation, framework, ion 434
 
  • H.C. Hüther, J. Fitzek, R. Müller, A. Schaller
    GSI, Darmstadt, Germany
 
  Approaching the commissioning of CRYRING, the first accelerator to be operated using the new control system for FAIR (Facility for Antiproton and Ion Research), the new settings management system will also be deployed in a production environment for the first time. A major development effort is ongoing to realize requirements necessary to support accelerator operations at FAIR. The focus is on the pattern concept which allows controlling the whole facility with its different parallel beams in an integrative way. Being able to utilize central parts of the new control system already at CRYRING, before the first FAIR accelerators are commissioned, facilitates an early proof of concept and testing possibilities. Concurrently, refactorings and enhancements of the commonly used LSA (LHC Software Architecture) framework take place. At CERN, the interface to devices has been redesigned to enhance maintainability and diagnostics capabilities. At GSI, support for polynomials as a native datatype has been implemented, which will be used to represent accelerator settings as well as calibration curves. Besides functional improvements, quality assurance measures are being taken to increase code quality in prospect of productive use.  
poster icon Poster MOPGF147 [1.498 MB]  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPGF175 A Unified Approach to the Design of Orbit Feedback with Fast and Slow Correctors controls, electron, simulation, feedback 494
 
  • S. Gayadeen, M.T. Heron, G. Rehm
    DLS, Oxfordshire, United Kingdom
 
  A unified control design is proposed to simultaneously determine control actions for both fast and slow arrays of correctors used for orbit feedback. By determining the interaction of the spatial subspaces of each array of correctors, spatial modes which require both fast and slow correctors can be identified. For these modes, a mid-ranging control technique is proposed to systematically allocate control action for each corrector. The mid-ranging control technique exploits the different dynamic characteristics of the correctors to ensure that the two arrays of actuators work together and avoid saturation of the fast correctors. Simulation results for the Diamond Storage Ring are presented.  
poster icon Poster MOPGF175 [1.101 MB]  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPGF176 Control System Challenges from an Upgrade to the Diamond Light Source Storage Ring controls, vacuum, instrumentation, sextupole 498
 
  • M.T. Heron, A.J. Rose
    DLS, Oxfordshire, United Kingdom
 
  In 2016 Diamond Light Source will replace one double bend achromatic cell of the Storage Ring with two double bend achromatic cells in the same longitudinal space. This will create an additional straight section for an insertion device (ID), thereby converting a bending magnet source point into and ID source point. Installation of the two new cells and recommissioning of the SR will take place in an eight week shutdown. The additional components in the two new cells necessitate a substantial reworking of the interface layer of control system, together with changes to all applications dependent on the physics parameters of the storage ring. This paper will describe how it is planned to manage the control system aspects of the project.
Presented on behalf of the DDBA control and instrumentation team.
 
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPGF178 Uncertainty Modelling of Response Matrix controls, feedback, electron, closed-orbit 506
 
  • S. Gayadeen, M.T. Heron, G. Rehm
    DLS, Oxfordshire, United Kingdom
 
  Electron orbit feedback controllers are based on the inversion of the response matrix of the storage ring and as a result, mismatches between the accelerator model and the real machine can limit controller performance or cause the controller to become unstable. In order to perform stability analysis tests of the controller, accurate uncertainty descriptions are required. In this paper, BPM scaling errors, actuator scaling errors and drifts in tune are considered as the main sources of spatial uncertainties and because most electron orbit feedback systems use Singular Value Decomposition (SVD) to decouple the inputs and outputs of the system, the uncertainty can be expressed in terms of this decomposition. However SVD does not allow the main sources of uncertainty to be decoupled so instead, a Fourier-based decomposition of the response matrix is used to decouple and model the uncertainties. In this paper, both Fourier and SVD uncertainty modelling methods are applied to the Diamond Light Source storage ring and compared.  
poster icon Poster MOPGF178 [1.564 MB]  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPGF072 Parameters Tracking and Fault Diagnosis base on NoSQL Database at SSRF distributed, hardware, injection, database 873
 
  • Y.B. Yan, Z.C. Chen, L.W. Lai, Y.B. Leng
    SINAP, Shanghai, People's Republic of China
 
  As a user facility, the reliability and stability are very important. Besides using high-reliability hardware, the rapid fault diagnosis, data mining and predictive analytic s are also effective ways to improve the efficiency of the accelerator. A beam data logging system was built at SSRF, which was based on NoSQL database. The logging system stores beam parameters under some predefined conditions. The details of the system will be reported in this paper.  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPGF117 High Level Applications for HLS-II controls, feedback, lattice, operation 974
 
  • K. Xuan, C. Li, J.Y. Li, W. Li, G. Liu, J.G. Wang, L. Wang
    USTC/NSRL, Hefei, Anhui, People's Republic of China
 
  The Hefei light source was overhauled beginning from 2010 and completed in the end of 2013. The new light source is renamed as HLS-II. A set of high level application tools, including physical quantity based control IOC, lattice calibration tools, orbit feedback, etc., were developed for the light source commissioning and operation. These tools have been playing important roles in the commissioning and operation of the light source. This paper reports some critical applications.  
poster icon Poster WEPGF117 [0.683 MB]  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPGF120 Timing System at MAX IV - Status and Development linac, timing, TANGO, controls 984
 
  • J.J. Jamróz, J. Forsberg, V.H. Hardion, V. Martos, D.P. Spruce
    MAX-lab, Lund, Sweden
 
  Funding: MAX IV Laboratory
A MAX IV construction of two storage rings (SR1.5GeV and SR3GeV) and a short pulse facility (SPF) has been proceeding over last years and will be finished in the middle of 2016. In 2014, few timing procurements were successfully finalized according to the MAX IV requirements and the installation works are ongoing along with the TANGO control system integration.
THPPC103
 
poster icon Poster WEPGF120 [0.725 MB]  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPGF128 Development Status of the Sirius Timing System timing, injection, linac, booster 1007
 
  • J.L.N. Brito, S.R. Marques, L.A. Martins, D.O. Tavares
    LNLS, Campinas, Brazil
 
  Sirius is a new low-emittance 3 GeV synchrotron light source under construction in Brazil by LNLS, scheduled for commissioning in 2018. Its timing system will be responsible for providing low jitter synchronized signals for the beam injection process as well as reference clocks and triggers for diverse subsystems such as electron BPMs, fast orbit feedback and beamlines distributed around the 518 meters circumference of the storage ring, Booster and Linac. It will be composed of Ethernet-configured standalone event generators and event receivers modules developed by SINAP through a collaboration with LNLS. The modules will be controlled by remote EPICS soft IOCs. This paper presents the system structure and the status of the development, some options for integrating it to the Sirius BPM MicroTCA platform are also discussed.  
poster icon Poster WEPGF128 [13.925 MB]  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THHC2O02 Component Database for APS Upgrade database, software, interface, lattice 1127
 
  • S. Veseli, N.D. Arnold, J. Carwardine, G. Decker, D.P. Jarosz, N. Schwarz
    ANL, Argonne, Ilinois, USA
 
  The Advanced Photon Source Upgrade (APS-U) project will replace the existing APS storage ring with a multi-bend achromat (MBA) lattice to provide extreme transverse coherence and extreme brightness x-rays to its users. As the time to replace the existing storage ring accelerator is of critical concern, an aggressive one-year removal/installation/testing period is being planned. To aid in the management of the thousands of components to be installed in such a short time, the Component Database (CDB) application is being developed with the purpose to identify, document, track, locate, and organize components in a central database. Three major domains are being addressed: Component definitions (which together make up an exhaustive "Component Catalog"), Designs (groupings of components to create subsystems), and Component Instances ('Inventory'). Relationships between the major domains offer additional "system knowledge" to be captured that will be leveraged with future tools and applications. It is imperative to provide sub-system engineers with a functional application early in the machine design cycle. Topics discussed in this paper include the initial design and deployment of CDB, as well as future development plans.  
slides icon Slides THHC2O02 [1.957 MB]  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)