

Commissioning of National Synchrotron Light Source-II (NSLS-II) Fast Orbit Feedback System

15th ICALEPCS 2015, Melbourne, Australia

K. Ha, Y. Tian, L. Yu, W. Cheng, L. Dalesio W. Levine, University of Maryland, College Park, MD, USA

October 17-23, 2015

Outline

- NSLS-II status and parameters overview
- NSLS-II orbit feedback system
 - Technical requirements and specifications
 - Hardware review
- Individual eigenmode compensation
 - NSLS-II FOFB algorithm with individual eigenmode compensation
- Implementation
 - FPGA
 - Latency
- Performance measurement
- Summary

NSLS-II Key performance

- Beamline operation started Feb. 2015 with 150 mA
- Oct started 250 mA top-off operation
 - 3 GeV, 500 mA beam current with 1 nm-rad horizontal and 8 pm-rad vertical emittance.
 - Beam sizes at source points are ~100 μ m / 3 μ m (x/y)
 - High beam stability in position (<10% of rms size) and angle (<10% of rms divergence)
 - 1080 bunches in 1320 RF buckets, 3 hrs lifetime
 - Top off injection for stable intensity ($\pm 0.5\%$ variation)

Design Parameters	Value	
Beam Energy [GeV]	3	One super-period SR Lattice function
Beam Current [mA]	500	40 <u>— βx — βy ηx*50</u>
Circumference [m]	792	
Number of DBA cells	30	
X/Y Emittance [nm-rad]	1/0.008	
Relative energy Spread	0.1%	0
RF Voltage [MV]	4.9	
Number of ID straights	15 SSS and 12 LSS	0 10 20 S [m] 30 40 50
		Long ID =9.3m Short ID= 6.6m

SR BPMs and Correctors Location

B

NATIONAL LABORATORY BROOKHAVEN SCIENCE ASSOCIATES

System Specifications

- Number of CCs : 30 sets
- Minimize beam motion < 10 %</p>
- Feedback rate : 10 kHz
- Bandwidth : ~ 200 Hz
- Control algorithm : SVD, Individual Eigenmode with PID control
 - FPGA based parallel matrix calculation
- Number of BPMs : 180 ea + ID bpms (27)
 - NSLS-II in house designed high performance rf BPM
- Number of a fast correctors : 90 ea

15 urad, 20 bit current output resolution, 1 ppm step response, 2 kHz small signal bandwidth

- Virtex-6 FPGA based hardware digital processor
 - Local cell installed own feedback processor which called Cell Controller unit
- Communication update rate is 10 kHz
 - 5 Gbps fiber optics communication for BPM and CC, 100 Mbps copper for PS
- All System's (CC/BPM/AI/PS) synchronized with accelerator timing system

Diagnostics/PS Rack and Cell Controller Chassis

RF BPM Chassis

Timing Local SDI Remote SDI

- 60% fill pattern, beam current was limited to an administrative limit of 25 mA, which corresponds to almost full ADC scale.
 - TBT (378 KHz) Resolution at 15 mA ~ 700 nm
 - FA (10 KHz) Resolution at 15 mA ~ 200 nm

BPM install status (~270)

- Linac 6
- LTB 5
- BR 36
- BTS 9
- SR 211, arc (180), ID (27), Injection(4)

В

NATIONAL LABORATORY

RF BPM Chassis

	NoMach	ine - Connec	tion to box	64-1.nsls2.l	onl.gov		-		γ.				- 7		.	- 24		3			- S. 2	
	📑 🗟 🛎 🖻 🕂 🕂 🇱 📾 🥁 × 🔗 × 🔍 🔍 110% 🔽 🔶>																					
	🕌 SR: C3	1-{AI}	🞽 Main	🎽 SF	-main	🔏 cc_n	nain.opi	🎽 bpn	n_PM_S	5tatus.c	opi 🕻	🞽 Full_	BPM_	Status.	opi 🛛							
	NSLS-II BPM MAIN STATUS PAGE																					
	INJECTION SYSTEM							STORAGE RING														
		LTB		BOOSTER				C1	C2	C3	C4	C5	C6	C7	C8	C9	C10	C11	C12	C13	C14	C15
	L-1	LTB-1	IS-2	DS-2	XS-2	CS-2	BTS-1			3-7	4-7	5-7			8-7		10-7	11-7				
AFE Modulo	L-2	LTB-2	A1-1	A2-1	A3-1	A4-1	BTS-2			3-8	4-8	5-8			8-8		<mark>10-8</mark>	<mark>11-8</mark>				
	L-3	LTB-3	A1-2	A2-3	A3-2	A4-2	BTS-3				4-9	5-9										
	L-4	LTB-4	A1-3	A2-3	A3-3	A4-3	BTS-4				<mark>4-10</mark>											
	L-5	LTB-5	A1-4	A2-4	A3-4	A4-4	BTS-5	1-1	2-1	3-1	4-1	5-1	6-1	7-1	8-1	9-1	10-1	11-1	12-1	13-1	14-1	15-1
DFE Module		LTB-6	A1-5	A2-5	A3-5	A4-5	BTS-6	1-2	2-2	3-2	4-2	5-2	6-2	7-2	8-2	9-2	10-2	11-2	12-2	13-2	14-2	15-2
	\vdash	\vdash	A1-0	A2-0	A3-0	A4-0	BIS-7	1-3	2-3	3-3	4-3	5-3	6-3	7-3	8-3	9-3	10-3	11-3	12-3	13-3	14-3	15-3
		\vdash	DS-1	XS-1	CS-1	IS-1	BTS-0	1-4	2-4	3-4	4-4	5-4	6-4	7-4	8-4	9-4	10-4	11-4	12-4	13-4	14-4	15-4
								1-5	2-5	3-5	4-5	5-5	6-5	7-5 7 6	8-5	9-5	10-5	11-5	12-5	13-5	14-5	15-5
		Launch Injection BPM Data Vie						C16	2-0 C17	C18	4-0 C10	0-0 C 20	C21	(222	C23	9-0	C25	C 26	C 27	C28	C20	C30
		SR BPM Data Viewer 1						16.7	17.7	19.7	019	020	021	022	023	024	025	020	027	020	029	20.7
	SR BPM Data Viewer 2					-	16-7	17-7	10-7					23-7					20-7		30-7	
								10-0	17-0						23-0					20-0		30-0
									<mark>11-3</mark>						20-3							30-10
Remote SDI								16-1	17-1	18-1	19-1	20-1	21-1	22.1	23-1	24-1	25-1	26-1	27-1	28-1	29-1	30-1
Timing Local SDI								16-2	17-2	18-2	19-2	20-2	21-2	22-2	23-2	24-2	25-2	26-2	27-2	28-2	29-2	30-2
								16-3	17-3	18-3	19-3	20-3	21-3	22-3	23-3	24-3	25-3	26-3	27-3	28-3	29-3	30-3
																			التعقي			

- 60% fill pattern, beam current was limited to an administrative limit of 25 mA, which corresponds to almost full ADC scale.
 - TBT (378 KHz) Resolution at 15 mA ~ 700 nm
 - FA (10 KHz) Resolution at 15 mA ~ 200 nm

- Linac 6
- LTB 5
- BR 36
- BTS 9
- SR 211, arc (180), ID (27), Injection(4)

В

NATIONAL LABORATORY

Topology of the FOFB dedicated network

NSLS-II Serial Device Interface(SDI)

- ✓ Ring topology method
- ✓ BPM and CC 5 Gbps, bidirectional (CW, CCW direction),
- ✓ Global 31 nodes
- ✓ bpm local nodes (6-13)
- ✓ PS 12 nodes (100 Mbps Ethernet PHY)
- ✓ Every 10 kHz transfer packets to neighbor cell
- ✓ Global packet size is 780 x 4byte (3120 bytes)
- ✓ Local packet size is 26 x 4byte (104 bytes)

- Lab test configuration before installation (2013.9)
- Tested total 32 nodes

Confirmed :

9

Timing, communication protocol, IOC...,

NATIONAL LABORAT

BROOKHAVEN SCIENCE ASSOCIATES

✓ Firmware functionalities

Topology of the FOFB dedicated network

NSLS-II Serial Device Interface(SDI)

- ✓ Ring topology method
- ✓ BPM and CC 5 Gbps, bidirectional (CW, CCW direction),
- ✓ Global 31 nodes
- ✓ bpm local nodes (6-13)
- ✓ PS 12 nodes (100 Mbps Ethernet PHY)
- ✓ Every 10 kHz transfer packets to neighbor cell
- ✓ Global packet size is 780 x 4byte (3120 bytes)
- ✓ Local packet size is 26 x 4byte (104 bytes)

- Lab test configuration before installation (2013.9)
 - Tested total 32 nodes

Confirmed :

Timing, communication protocol, IOC...,

NATIONAL LABORAT

BROOKHAVEN SCIENCE ASSOCIATES

✓ Firmware functionalities

FOFB Calculation - Compensation for each eigenmode

11

FOFB Calculation - Compensation for each eigenmode

 $c_1, c_2, ..., c_N$ is the input projections in the eigenspace.

 $Q_1(z), Q_2(z), ..., Q_N(z)$ is the compensator for each eigenmode.

We want to prove that $Q_1(z),..., Q_N(z)$ only change the corresponding eigenmode in eigenspace without affecting other eigenmodes.

FOFB Calculation - Compensation for each eigenmode

 $c_1, c_2, ..., c_N$ is the input projections in the eigenspace.

 $Q_1(z), Q_2(z), ..., Q_N(z)$ is the compensator for each eigenmode.

We want to prove that $Q_1(z),..., Q_N(z)$ only change the corresponding eigenmode in eigenspace without affecting other eigenmodes.

Cell Controller FPGA internal blocks

14

Block diagram of the feedback calculation

Block diagram of the feedback calculation

Overall timing estimation

Local BPM data (2.2 us, 104 byte, 5 Gbps, @ 125 MHz)
Global BPM data transfer link (20 us. 3120 byte, 5 Gbps, @ 125 MHz)
Calculation (48 us @ 50 MHz, 180* 480 and 540 * 6 matrix calculation)
Corrector setting (7 us, 100 Mbps @ 25 MHz)

BPM/CC/PSI Hardware Latency measurement

17

BPM/CC/PSI Hardware Latency measurement

18

BPM/CC/PSI Hardware Latency measurement

NATIONAL LABORATORY

PSD/RMS beam motion measurement

3.5

2.5

1.5

0.5

55

60

0

65

О

11

65

70

75

80

S [m]

85

90

95

BROOKHAVEN SCIENCE ASSOCIATES

100

105

70

Xrms [um]

0

*,

RMS motion in frequency range [1

1,

¢þ

1%

١

80

10%

75

Ô

*

O

85

90

95

105

100

Yrms FOFBOFF

10% SigmaY

Yrms FOFBON

ဝု

Q

500] Hz

Xrms FOFBOFF

Xrms FOFBON

1% SigmaX

a

O

Integrated RMS motion in frequency range 1-500Hz, plotted for 12 BPMs in one super-cell (C02 and C03).

180 BPMs, 16384 points of FFT Average PSD excluding dispersive BPMs, 40 Eig

Average PSD excluding dispersive BPMs, 40 Eignemode, Ki=0.25, Kp=0.5

W. Cheng
W. Cheng
U.S. DEPARTMENT OF
ENERGY
NATIONAL LABORATORY

20

Top-off injection mode test

Summary

- Run FOFB user operation since May 2015
- The long term drift was less than <u>4 um(H) / 1 um(V) during 15 hours</u>.
- BPM SA data shows the orbit stability was improved a factor of 7 to 10.
- BPM FA data shows the noise suppression <u>up to 400 Hz</u>.
- The integrated orbit noise is less than 10 % of beam size.
- Measured open loop system transfer function and system latencyRun top-off injection mode at 250 mA operation
- Continues study that optimization and operation procedure

Thank you for your attention!

Questions and comments are welcome.

Acknowledgments

• BPM/ Cell controller development :

Kurt Vetter Joseph Mead Alfred Dellapenna Joseph De Long Om Singh

• PSC and PS design:

Wing Louie John Ricciardelli George Ganetis

