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Abstract
Electron orbit feedback controllers are based on the in-

version of the response matrix of the storage ring and as a

result, mismatches between the accelerator model and the

real machine can limit controller performance or cause the

controller to become unstable. In order to perform stability

analysis tests of the controller, accurate uncertainty descrip-

tions are required. In this paper, BPM scaling errors, actuator

scaling errors and drifts in tune are considered as the main

sources of spatial uncertainties and because most electron

orbit feedback systems use Singular Value Decomposition

(SVD) to decouple the inputs and outputs of the system,

the uncertainty can be expressed in terms of this decompo-

sition. However SVD does not allow the main sources of

uncertainty to be decoupled so instead, a Fourier-based de-

composition of the response matrix is used to decouple and

model the uncertainties. In this paper, both Fourier and SVD

uncertainty modelling methods are applied to the Diamond

Light Source storage ring and compared.

INTRODUCTION
The response matrix, R ∈ RM×N is the steady state (DC)

response of the correctors to a change in the transverse or-

bit position measured at the mth beam position monitors

(BPMs) due to a transverse kick at the nth corrector. For
correction of the electron orbit, a map from BPM to cor-

rector is required and therefore the inverse of the nominal

(or “golden”) response matrix is required. The inverse is

normally computed using a Singular Value Decomposition

(SVD) approach, such that

Ro = ΦoΣoΨ
T
o

R−1o = ΨoΣ
−1
o Φ

T
o .

(1)

However because of BPM and corrector scaling errors from

imperfect calibrations or drifts in the tune, the actual re-

sponse of the machine may differ over time from the ideal

response. This means that the control action calculated from

the ideal response may be either too aggressive or too con-

servative. In the case of such model mismatch, applying

the control action may result in closed loop instabilities or

even if the closed loop remains stable, steady state perfor-

mance will degrade. By modelling the various sources of the

uncertainties, the mismatch between the machine response

and the ideal response can be quantified and the uncertainty

description can then be used in stability analysis techniques

to determine the allowable bound on the size of uncertainty

to ensure closed loop stability ( [1] in these proceedings).

In this paper, modelling of the uncertainties associated with

the response matrix is presented. Firstly, the uncertainties

are described within the commonly used SVD framework.

However there are limitations to this approach and as an al-

ternative, a harmonic decomposition of the response matrix
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Figure 1: Additive uncertainty in response matrix R0 (|ΔR |).

is presented and the uncertainty is expressed in terms of the

Fourier coefficients of the response.

UNCERTAINTY DESCRIPTIONS USING
SINGULAR VALUE DECOMPOSITION
The uncertainty in the response matrix can be expressed

by an additive error,

R = Ro + ΔR (2)

where R represents a measured response matrix and Ro rep-

resents the nominal response matrix. Figure 1 shows the

structure of ΔR for the Diamond storage ring taken from one

measurement of R. The uncertainty in the response matrix
combines the errors in Φ, Σ and Ψ and it is not straightfor-

ward to distinguish, for example, the effect of BPM errors

from corrector errors. It is therefore more useful to model

the uncertainty in the process output (sensor values) by mul-

tiplicative operators [2], which can be expressed as

R = (I + ΔB)R0 (3)

so that

ΔB = RR−10 − I . (4)

The uncertainty can be projected into “mode space”, such

that

ΔB = ΦΣΨ
TΨ0Σ

−1
0 Φ

T
0 − I . (5)

Likewise, the same treatment can be given to uncertainties

in the process input (corrector values), which is expressed

as

R = R0(I + ΔC ) (6)

so that

ΔC = Ψ0Σ
−1
0 Φ

T
0ΦΣΨ

T − I . (7)

By assuming that all the uncertainty lies in either Φ or Ψ,

then the uncertainties can be expressed as

Δ̄B = ΦΦ
T
0 − I

Δ̄C = Ψ0Ψ
T − I .

(8)
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Figure 2: Multiplicative uncertainty in left singular vectors,

Φ0 (Δ̄B).

The shape of these uncertainties are shown in Fig. 2 and

Fig. 3 respectively where the uncertainty between modes are

the most significant (represented by the diagonal elements).

The uncertainty in the singular values can also be included

as a multiplicative error, such that

ΔΣ = Σ
−1
0 Σ − I (9)

where ΔΣ is diagonally structured since Σ0 and Σ are diago-

nal. The diagonal values are shown in Fig. 4 where the size

of the uncertainty in the higher order modes (associated with

small singular values) is greater than the error in low order

modes. Therefore the high order modes are more vulnerable

to stability problems.

The response matrix with all sources of uncertainty can

then be written as

R = (I + Δ̄B)Φ0 Σ0(I + ΔΣ) Ψ0(I + Δ̄B) (10)

While the uncertainty descriptions using the SVD matri-

ces are useful for analysis, such as identifying which modes

are more affected by uncertainties, there is no physical in-

terpretation of the uncertainty structure and effects from

individual BPMs and correctors are difficult to decouple.

Instead, a harmonic decomposition method is proposed in

the next section so that the effects of BPMs, corrector and

tune drift can be decoupled and modelled.

UNCERTAINTY DESCRIPTIONS USING
HARMONIC DECOMPOSITION

Harmonic Decomposition of the Response Matrix
For a transverse excitation θn at the nth corrector and

measured by the mth BPM, the disturbed closed orbit may

be expressed as

ym =
θc
√
βm
√
βn

2 sin πν
cos (νπ − ( |ηm − ηn |)) (11)

where βm and βn are the magnitudes of the beta function
at BPM and corrector locations respectively and ηm and

ηn are the phase advances at BPM and corrector locations
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Figure 3: Multiplicative uncertainty in right singular vectors,

Ψ0 (Δ̄C).

respectively and ν is the tune. By introducing the Courant-
Snyder variables [3]

ỹm =
ym√
βm
, η̃ =

η

ν
(12)

Eq. 11 can be written as

ỹm =
θn
√
βn

2 sin πν
cos ν (π − ( |η̃m − η̃n |)) . (13)

Fourier analysis of Eq. 13 gives [4, 5]

ỹm =
θn βn
2 sin πν

∞∑
f=0

σ̂ f cos f (η̃m − η̃n) (14)

where

σ̂ f =
(−1) f

π

∫ π

−π
cos f η̃ cos νη̃ dη̃

=
2ν

ν2 − f 2
sin νπ

π
( f = 1, 2, . . . ).

(15)

The expression in Eq. 14 can be further simplified by

ỹm = θn βn

∞∑
f=0

σ̂ f cos f (η̃m − η̃n) (16)

where the Fourier coefficients are redefined as

σ̂ f =
1

2π

2ν

ν2 − f 2
( f = 0, 1, 2, . . . ). (17)

Therefore each element of the response matrix is defined as

ym/θn is given by

rmn =
√
βm
√
βn

F∑
f=−F

σ̂ f cos f (η̃m − η̃n)

=
√
βm
√
βn

F∑
f=−F

σ̂ fRe(ei f η̃me−i f η̃n )

(18)

for f = [−F, . . . , F] where F is chosen (without loss of

generality) so that F ≤ M where M ≤ N . In matrix form
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Figure 4: Multiplicative uncertainty in singular vectors, Σ0
(|ΔΣ |).

Eq. 18 becomes

R0 = Φ̂0Σ̂0Ψ̂−T0 (19)

where

Σ̂0 = diag f=−F,...,F {σ̂ f }
Φ̂0 = diagm=1,...,M {

√
βm}Re

( [
ei f η̃m

]
mf

)

Ψ̂0 = diagn=1,...,N {
√
βn}Re

( [
e−i f η̃n

]
nf

) (20)

and Φ̂0 ∈ RM×(2F+1) , Σ̂0 ∈ R(2F+1)×(2F+1) and Ψ̂0 ∈
R
N×(2F+1) [5]. The Fourier coefficients defined in Eq. 17

are completely determined by the tune and are shown in

Fig. 5 for the vertical and horizontal response matrices of

the storage ring. The resonance properties of the disturbed

closed orbit are evident and show that the orbit is most sensi-

tive to those Fourier components of the perturbation whose

order is close to the tune. The left and right matrices Φ̂0 and

Ψ̂0 are determined by the betatron phases of the BPMs and

corrector magnets, which in turn depends solely on the posi-

tion of the BPMs and the strengths of the corrector magnets

respectively. The columns of Φ̂0 and Ψ̂0 are not orthogonal

because of the uneven spacing of BPMs and corrector mag-

nets. However, the matrices are block orthogonal reflecting

the repetition of cells and symmetry of the ring.

Modelling Uncertainties using Harmonic Decom-
position
Given the expression for Fourier coefficients in Eq. 17, a

change in a single fourier coefficient with respect to the tune

can be expressed as

Δσ̂f ≈
δσ̂ f

δν

�����ν=ν0 Δν (21)

where ν0 is the nominal tune and the partial derivative term
can be written as

δσ̂ f

δν

�����ν=ν0 =
σ̂ f

ν0

(
f 2 + ν02

f 2 − ν02
)
. (22)
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Figure 5: Horizontal (∗ blue) and vertical (◦ red) Fourier
coefficients |σ̂ f | with vertical tune νy = 13.324 and νx =
27.266.

Therefore, the uncertainty in a Fourier coefficient, Δσ̂f is

dependent only on the tune and can be represented by a

multiplicative operator

Δσ̂f =

(
σ̂ f

ν0

[
f 2 + ν02

f 2 − ν02
])
Δν (23)

where Δν represents the change in tune from the nominal

value. In matrix form,

ΔΣ̂ = WΣ̂Δν (24)

where

WΣ̂ = diag
{
σ̂ f

ν0

[
f 2 + ν02

f 2 − ν02
]}
. (25)

Uncertainty can also be included in the left and right har-

monic matrices as in the SVD approach, so a complete de-

scription of the spatially uncertain response can be written

as

R =
(
I + ΔΦ̂

)
Φ̂0 Σ̂0

(
I + ΔΣ̂

)
Ψ̂−T0
(
I + ΔΨ̂

)
=
(
I + ΔΦ̂

)
Φ̂0 Σ̂0

(
I +WΣ̂Δν

)
Ψ̂−T0
(
I + ΔΨ̂

) (26)

where ΔΣ̂ is a diagonal matrix with elements determined

by Eq. 23, ΔΦ̂ represents errors in the BPM positions and

ΔΨ̂ represents variations in the strengths of the corrector

magnets.

Uncertainty Analysis
By introducing a constant energy deviation of 0.03 GeV,

the beta function and phase advance changes, such that the

resulting uncertainties in Φ̂ and Ψ̂ associated with these

changes are shown in Fig. 6 and Fig. 7. Because Φ̂ and Ψ̂ are

determined by the beta function and phase advance, both ΔΦ̂
and ΔΨ̂ have a large diagonal structure but coupling between

the beta function and phase advance within a cell results in

the off-diagonal elements being non-zero. However, each

element of Φ̂ and Ψ̂ is associate with beam parameters η and
β at BPM and corrector locations respectively. Likewise

the energy deviation causes a 0.2 % change in tune which
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Figure 6: Multiplicative uncertainty in left harmonic matrix,

Φ̂0 (ΔΦ̂).
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Figure 7: Multiplicative uncertainty in right harmonic ma-

trix, Ψ̂0 (ΔΨ̂).

affects the Fourier coefficients, represented by ΔΣ̂ shown

in Fig. 8. The uncertainty is diagonally structured and the

largest error is seen at the modes associated with the tune

i.e. the 13th mode (where νy = 13.36). For this calculation
F = 40 was chosen. However, given the relationship in

Eq. 24, the uncertainty in the tune can be expressed as

Δν = W−1
Σ̂
ΔΣ̂ (27)

and using this relationship, size of uncertainty in the tune at

each harmonic harmonicmodes is shown in Fig. 8. Therefore

for a given error in each Fourier coefficient, the resulting

change in tune at each harmonic mode can be determined.

CONCLUSION
Uncertainty in the response matrix can be described by

multiplicative uncertainty descriptions using either a Sin-

gular Value or Harmonic decompositions of the response

matrix. Using the SVD approach, the uncertainty in the

Figure 8: Multiplicative uncertainty in Fourier coefficients,

Σ̂0 (ΔΣ̂) and in the tune across modes (Δν).

response matrix can be expressed in terms of the left and

right singular vectors and the singular values. This is useful

for assessing the stability of the closed loop which is based

on SVD, however it is difficult to interpret the uncertainty

description in terms of physical beam parameters and to

decouple the error observed at a singular BPM or corrector.

The Fourier approach on the other hand, offers uncertainty

descriptions which are directly associated with the betatron

function and phase advance changes at BPM and corrector

locations. Furthermore, errors in the Fourier coefficients are

directly associated with tune drifts. Therefore the Fourier

approach offers physical interpretation of the uncertainty

observed in the response matrix. In the companion paper in

these proceedings, the uncertainty descriptions are used to

determine closed loop stability [1].
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