Timing and Sync
Paper Title Page
WEC3O01 Trigger and RF Distribution Using White Rabbit 619
 
  • T. Włostowski, G. Daniluk, M.M. Lipinski, J. Serrano
    CERN, Geneva, Switzerland
  • F. Vaga
    University of Pavia, Pavia, Italy
 
  White Rabbit is an extension of Ethernet which allows remote synchronization of nodes with jitters of around 10ps. The technology can be used for a variety of purposes. This paper presents a fixed-latency trigger distribution system for the study of instabilities in the LHC. Fixed latency is achieved by precisely time-stamping incoming triggers, notifying other nodes via an Ethernet broadcast containing these time stamps and having these nodes produce pulses at well-defined time offsets. The same system is used to distribute the 89us LHC revolution tick. This paper also describes current efforts for distributing multiple RF signals over a WR network, using a Distributed DDS paradigm.  
slides icon Slides WEC3O01 [1.465 MB]  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEC3O02 The Phase-Locked Loop Algorithm of the Function Generation/Controller 624
 
  • M. Magrans de Abril, Q. King, R. Murillo-Garcia
    CERN, Geneva, Switzerland
 
  This paper describes the phase-locked loop algorithms that are used by the real-time power converter controllers at CERN. The algorithms allow the recovery of the machine time and events received by an embedded controller through WorldFIP or Ethernet-based fieldbuses. During normal operation, the algorithm provides less than 10 μs of time precision and 0.5 μs of clock jitter for the WorldFIP case, and less than 2.5 μs of time precision and 40 ns of clock jitter for the Ethernet case.  
slides icon Slides WEC3O02 [1.459 MB]  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEC3O03
Femtosecond Timing System Development in SSRF  
 
  • X.L. Dai, M. Liu, C.X. Yin, L.Y. Zhao
    SINAP, Shanghai, People's Republic of China
 
  Funding: The project of femtosecond timing system was supported by the National Natural Science Foundation of China (No. 11305246).
The current timing system in SSRF cannot satisfy the requirement of the pump-probe experiment in SSRF Phase-II project, so the femtosecond timing system was developed to realize 100fs jitter and 200fs phase drift in the long term. The femtosecond timing system is based on optical fiber networks and laser frequency stabilizing system. To achieve less than 100fs jitter, the narrow line-width Continues Wave (CW) laser is used to transmit RF signals in optical fiber networks. In order to achieve less than 200fs phase drift in the long term, the phase change in the optical fiber networks is detected by heterodyne interferometer and compensated by LLRF system to generate timing signals. The design and preliminary test result of femtosecond timing system is presented in this paper.
 
slides icon Slides WEC3O03 [30.833 MB]  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEC3O04 New Event Timing System for Damping Ring at SuperKEKB 629
 
  • H. Kaji, K. Furukawa, M. Iwasaki, T. Kobayashi, F. Miyahara, T.T. Nakamura, M. Satoh, M. Suetake, M. Tobiyama
    KEK, Ibaraki, Japan
  • Y. Iitsuka
    EJIT, Hitachi, Ibaraki, Japan
  • T. Kudou, S. Kusano
    Mitsubishi Electric System & Service Co., Ltd, Tsukuba, Japan
  • M. Liu, C.X. Yin
    SINAP, Shanghai, People's Republic of China
 
  SuperKEKB is the upgrade of KEKB, which is the world's largest luminosity accelerator at KEK. One of key items to realize 40 times larger luminosity than that of KEKB is damping ring (DR) for positron injection. The injector linac (LINAC) once stores the produced positrons into DR and suppress their emittance. Then low emittance positrons are extracted from DR and injected into the main ring. For this complicated injection process, the Event Timing System* for LINAC** was upgraded and its soundness is demonstrated by injecting electrons into two light source rings***. New Event modules were also installed under the Event network for LINAC as the sub timing system for DR. New Event modules were developed which can be operated with the different Event clock from that of upstream modules. It solves the difference in RF frequency between LINAC (2856MHz) and DR (509MHz). This sub timing system can manage the triggers towards totally 84 BPMs at DR although it consists of only 5 Event modules. The timing of those triggers can be independently set in more precise than 100ps. The requirements to DR timing system and the newly developed modules with its configuration at DR are explained.
*H. Kaji et al., THCOCA04, Proc. of ICALEPCS'13, San Francisco, CA.**H. Kaji et al., TUPRI109, Proc. of IPAC'14, Dresden, Germany.***Abstract submitted to IPAC'15.
 
slides icon Slides WEC3O04 [1.500 MB]  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEC3O05 Timing System for the HAPLS/L3 ELI Project 633
 
  • P. Camino, D. Monnier-Bourdin
    Greenfield Technology, Massy, France
  • M.A. Drouin, J. Naylon
    ELI-BEAMS, Prague, Czech Republic
  • C. Haefner, G.W. Johnson, S.J. Telford
    LLNL, Livermore, California, USA
  • B. Rus
    Czech Republic Academy of Sciences, Institute of Physics, Prague, Czech Republic
 
  The High Repetition-Rate Advanced Petawatt Laser System (HAPLS) forms part of the European Union's Extreme Light Infrastructure Beamlines project (ELI-Beamlines) which will be the first international laser research infrastructure of its kind. HAPLS will generate peak powers greater than one petawatt at a repetition rate of 10 Hz with 30fs wide pulses. ELI will enable unprecedented techniques for many diverse areas of research. HAPLS requires a high-precision timing system that operates either independently or synchronized with ELI's system. Greenfield Technology, a producer of mature picosecond timing systems for several years, has been hired by LLNL* to provide just such a timing system. It consists of a central Master Timing Generator (MTG) that generates and transmits serial data streams over an optical network that synchronizes local multi-channel delay generators which generate trigger pulses to a resolution of 1ps. The MTG is phase-locked to an external 80 MHz reference that ensures a jitter of less than 10ps. The various qualities and functions of this timing system are presented including the LabVIEW interface and precision phase locking to the 80MHz reference.
*LLNL is operated by Lawrence Livermore National Security, LLC, for the U.S. Department of Energy, National Nuclear Security Administration under Contract DE-AC52-07NA27344.
 
slides icon Slides WEC3O05 [2.256 MB]  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEC3O06 ERL Time Management System 636
 
  • P. K. Kankiya, T.A. Miller, B. Sheehy
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy.
The Energy Recovery LINAC (ERL) at BNL is an R&D project. A timing system was developed in conjunction with other available timing systems in order to operate and synchronize instruments at the ERL. This paper describes the time management software which is responsible for automating the delay configuration based on beam power and instrument limitations, for maintaining beam operational parameters, and respond to machine protection system.
 
slides icon Slides WEC3O06 [4.239 MB]  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEM301 Timing Systems for ATNF Telescopes 660
 
  • S.A. Hoyle
    CASS, Epping, Australia
  • P.L. Mirtschin
    CSIRO ATNF, Epping, Australia
 
  Radio Telescopes require precise time and timing signals for accurate telescope pointing, synchronisation of signal processing instrumentation and offline manipulation of observation data. We provide an overview of the timing system in use at our observatories; briefly describing the main features of the hardware, firmware and software.  
slides icon Slides WEM301 [0.568 MB]  
poster icon Poster WEM301 [0.468 MB]  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPGF119 Bunch to Bucket Transfer System for FAIR 980
 
  • J.N. Bai
    IAP, Frankfurt am Main, Germany
  • R. Bär, D. Beck, O.K. Kester, D. Ondreka, C. Prados, W.W. Terpstra
    GSI, Darmstadt, Germany
  • T. Ferrand
    TEMF, TU Darmstadt, Darmstadt, Germany
 
  For the FAIR accelerator complex, synchronization of the bunch to bucket (B2B) transfer will be realized by the General Machine Timing system and the Low-Level RF system. Based on these two systems, both synchronization methods, the phase shift and the frequency beating method, are available for the B2B transfer system for FAIR. This system is capable to realize the B2B transfer within 10ms and the precision better than 1 degree for ions over the whole range of stable isotopes. At first, this system will be used for the transfer from the SIS18 to the SIS100. It will then be extended to all transfers at the FAIR accelerator facility. This paper introduces the synchronization methods and concentrates on the standard procedures and the functional blocks of the B2B transfer system.  
poster icon Poster WEPGF119 [1.493 MB]  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPGF120 Timing System at MAX IV - Status and Development 984
 
  • J.J. Jamróz, J. Forsberg, V.H. Hardion, V. Martos, D.P. Spruce
    MAX-lab, Lund, Sweden
 
  Funding: MAX IV Laboratory
A MAX IV construction of two storage rings (SR1.5GeV and SR3GeV) and a short pulse facility (SPF) has been proceeding over last years and will be finished in the middle of 2016. In 2014, few timing procurements were successfully finalized according to the MAX IV requirements and the installation works are ongoing along with the TANGO control system integration.
THPPC103
 
poster icon Poster WEPGF120 [0.725 MB]  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPGF121 Operation Status of J-PARC Timing System and Future Plan 988
 
  • N. Kamikubota, N. Yamamoto
    J-PARC, KEK & JAEA, Ibaraki-ken, Japan
  • N. Kikuzawa, F. Tamura
    JAEA/J-PARC, Tokai-mura, Japan
 
  The beam commissioning of J-PARC started in November, 2006. Since then, the timing system of J-PARC accelerator complex has contributed stable beam operations of three accelerators: a 400-MeV linac (LI), a 3-GeV rapid cycling synchrotron (RCS), and a 50-GeV synchrotron (MR). The timing system handles two different repetition cycles: 25 Hz for LI and RCS, and 2.48-6.00 sec. for MR (MR cycle). In addition, the timing system is capable to provide beams to two different experimental facilities in single MR cycle: Material and Life Science Experimental Facility (MLF) and Neutrino Experimental Facility (NU), or, MLF and Hadron Experimental Facility (HD). Recently, a plan to introduce a new facility, Accelerator-Driven Transmutation Experimental Facility (ADS), around 2018, has been discussed. Studies for the timing system upgrade are started: change of the master repetition rate from 25Hz to 50 Hz, and a scheme to provide beams to three different experimental facilities in single MR cycle (MLF, NU and ADS or MLF, HD and ADS). This paper reviews the 8-year operation experience of the J-PARC timing system, followed by a present perspective of upgrade studies.  
poster icon Poster WEPGF121 [1.138 MB]  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPGF122 Real-Time Performance Improvements and Consideration of Parallel Processing for Beam Synchronous Acquisition (BSA) 992
 
  • K.H. Kim, S. Allison, T. Straumann, E. Williams
    SLAC, Menlo Park, California, USA
 
  Funding: Work supported by the the U.S. Department of Energy, Office of Science under Contract DE-AC02-76SF00515 for LCLS I and LCLS II.
Beam Synchronous Acquisition (BSA) provides a common infrastructure for aligning data to each individual beam pulse, as required by the Linac Coherent Light Source (LCLS). BSA allows 20 independent acquisitions simultaneously for the entire LCLS facility and is used extensively for beam physics, machine diagnostics and operation. BSA is designed as part of LCLS timing system and is currently an EPICS record based implementation, allowing timing receiver EPICS applications to easily add BSA functionality to their own record processing. However, the non-real-time performance of EPICS record processing and the increasing number of BSA devices has brought real-time performance issues. The major reason for the performance problem is likely due to the lack of separation between time-critical BSA upstream processing and non-critical downstream processing. BSA is being improved with thread level programming, breaking the global lock in each BSA device, adding a queue between upstream and downstream processing, and moving out the non-critical downstream to a lower priority worker thread. The use of multiple worker threads for parallel processing in SMP systems is also being investigated.
 
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPGF124 Application Using Timing System of RAON Accelerator 995
 
  • S. Lee, H. Jang, C.W. Son
    IBS, Daejeon, Republic of Korea
 
  Funding: This work is supported by the Rare Isotope Science Project funded by Ministry of Science, ICT and Future Planning(MSIP) and National Research Foundation(NRF) of Korea(Project No. 2011-0032011).
RAON is a particle accelerator to research the interaction between the nucleus forming a rare isotope as Korean heavy-ion accelerator. RAON accelerator consists of a number of facilities and equipments as a large-scaled experimental device operating under the distributed environment. For synchronization control between these experimental devices, timing system of the RAON uses the VME-based EVG/EVR system. In order to test the high-speed performance of the control logic with the minimized event signal delay, it is planned to establish the step motor controller testbed applying the FPGA chip. The testbed controller will be configured with Zynq 7000 series of Xilinx FPGA chip. Zynq as SoC (System on Chip) is divided into PS (Processing System) with PL (Programmable Logic). PS with the dual-core ARM cpu is performing the high-level control logic at run-time on linux operating system. PL with the low-level FPGA I/O signal interfaces with the step motor controller with the event signal received from timing system. This paper describes the content and performance evaluation obtained from the step motor control through the various synchronized event signal received from the timing system.
 
poster icon Poster WEPGF124 [1.695 MB]  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPGF126 Prototype of White Rabbit Network in LHAASO 999
 
  • H. Li, G.H. Gong
    Tsinghua University, Beijing, People's Republic of China
  • Q. Du
    LBNL, Berkeley, California, USA
 
  Funding: Key Laboratory of Particle & Radiation Imaging, Open Research Foundation of State Key Lab of Digital Manufacturing Equipment & Technology in Huazhong Univ. of Science & Technology
Synchronization is a crucial concern in distributed measurement and control systems. White Rabbit provides sub-nanosecond accuracy and picoseconds precision for large distributed systems. In the Large High Altitude Air Shower Observatory project, to guarantee the angular resolution of reconstructed air shower event, a 500 ps overall synchronization precision must be achieved among thousands of detectors. A small prototype built at Yangbajin, Tibet, China has been working well for a whole year. A portable calibration node directly synced with the grandmaster switch and a simple detectors stack named Telescope are used to verify the overall synchronization precision of the whole prototype. The preliminary experiment results show that the long term synchronization of the White-Rabbit network is promising and 500 ps overall synchronization precision is achievable with node by node calibration and temperature correction.
 
poster icon Poster WEPGF126 [1.233 MB]  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPGF127 A Generic Timing Software for Fast Pulsed Magnet Systems at CERN 1003
 
  • C. Chanavat, M. Arruat, E. Carlier, N. Magnin
    CERN, Geneva, Switzerland
 
  At CERN, fast pulsed magnet (kicker) systems are used to inject, extract, dump and excite beams. Depending on their operational functionalities and as a result of the evolution of controls solutions over time, the timing controls of these systems were based on hybrid hardware architectures that have resulted in a large disparity of software solutions. In order to cure this situation, a Kicker Timing Software (KiTS), based on a modular hardware and software architecture, has been developed with the objective to increase the homogeneity of fast and slow timings control for all types of fast pulsed magnet systems. The KiTS uses a hardware abstraction layer and a configurable software model implemented within the Front-End Software Architecture (FESA) framework. It has been successfully deployed in the control systems of the different types of kicker systems at CERN like for the PS continuous transfer, the SPS injection and extraction, the SPS tune measurement and the LHC injection.  
poster icon Poster WEPGF127 [38.304 MB]  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPGF128 Development Status of the Sirius Timing System 1007
 
  • J.L.N. Brito, S.R. Marques, L.A. Martins, D.O. Tavares
    LNLS, Campinas, Brazil
 
  Sirius is a new low-emittance 3 GeV synchrotron light source under construction in Brazil by LNLS, scheduled for commissioning in 2018. Its timing system will be responsible for providing low jitter synchronized signals for the beam injection process as well as reference clocks and triggers for diverse subsystems such as electron BPMs, fast orbit feedback and beamlines distributed around the 518 meters circumference of the storage ring, Booster and Linac. It will be composed of Ethernet-configured standalone event generators and event receivers modules developed by SINAP through a collaboration with LNLS. The modules will be controlled by remote EPICS soft IOCs. This paper presents the system structure and the status of the development, some options for integrating it to the Sirius BPM MicroTCA platform are also discussed.  
poster icon Poster WEPGF128 [13.925 MB]  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPGF129 CERN timing on PXI and cRIO platforms 1011
 
  • A. Rijllart, O.Ø. Andreassen, J. Blanco Alonso
    CERN, Geneva, Switzerland
 
  Given the time critical applications, the use of PXI and cRIO platforms in the accelerator complex at CERN, require the integration into the CERN timing system. In this paper the present state of integration of both PXI and cRIO platforms in the present General Machine Timing system and the White Rabbit Timing system, which is its successor, is described. PXI is used for LHC collimator control and for the new generation of control systems for the kicker magnets on all CERN accelerators. The cRIO platform is being introduced for transient recording on the CERN electricity distribution system and has potential for applications in other domains, because of its real-time OS, FPGA backbone and hot swap modules. The further development intended and what type of applications are most suitable for each platform, will be discussed.  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)