
A GENERIC TIMING SOFTWARE FOR FAST PULSED MAGNET

SYSTEMS AT CERN

C. Chanavat, M. Arruat, E. Carlier, N. Magnin, CERN, Geneva, Switzerland

Abstract
At CERN, fast pulsed magnet (kicker) systems are used

to inject, extract, dump and excite beams. Depending on
their operational functionalities and as a result of the
evolution of controls solutions over time, the timing
controls of these systems are based on different hardware
architectures that result in a large disparity of software
solutions. A Kicker Timing Software (KiTS), based on a
modular hardware and software architecture, has been
developed with the objective to increase the homogeneity
of fast and slow timing control for fast pulsed magnet
systems. The KiTS uses a hardware abstraction layer and
a configurable software model implemented within the
Front-End Software Architecture (FESA) framework. It
has been successfully deployed in the control systems of
the LHC and SPS injection kickers, the SPS extraction
kickers and the SPS tune measurement kickers.

INTRODUCTION

A kicker system must meet two requirements that are
contradictory i.e. a high deflection strength and a short
rise time of its magnetic field. Both properties are, for a
given operational voltage, proportional to the product of
the electrical current passing through the magnet and its
length.

In order to meet these contradictory requirements, the
length of the magnet is reduced by splitting the system
into several independently powered magnet modules.
Generally, the powering circuit of a magnet module
consists of a set of well identified hardware components: A resonant charging power supply (RCPS) used to

charge a pulse generator in order to decrease the time
interval between two successive pulses and reduce
the number of faulty shots; A line type pulse generator based on a pulse forming
network (PFN) supplying quasi rectangular current
pulses with variable length and amplitude; Up to three high voltage fast switches used to
transfer in a controlled way the energy stored in the
PFN to the magnet and to adjust the pulse length; A coaxial transmission line (TL) connecting the
generator to ferrite type magnets; A ferrite magnet, built as lumped parameter delay
lines and working in ultra-high vacuum; A termination resistor (TR) matched to the
characteristics impedance of the generator,
transmission line and magnet and absorbing the pulse
energy supplied by the generator.

On this basis, the simplest kicker system comprises at
least one PFN charged by one RCPS and discharged
through the TL within one terminated magnet by one high
voltage switch as shown in Figure 1.

MAGNET TRSWITCH TLRCPS PFN

Figure 1: Simplest kicker system architecture

Although peak current, system impedance, pulse shape,

pulse duration and repetition rate are different for every

system, the different hardware components have been

standardised as far as possible, and, depending of the
kicker functions (beam injection, extraction or excitation),
the number of RCPS, PFN, high voltage switches and
magnet are combined in more or less complex
architecture in order to provide the required
functionalities. Different types of combination used in the
SPS and the LHC are summarised in Table 1.

Table 1: Example of Kicker Architecture

System RCPS

per

System

PFN

per

RCPS

Switch

per

PFN

Magnet
per

PFN

SPS

Injection

4 2 3 2

SPS East
Extraction

1 5 2 1

SPS West
Extraction

1 1 1 4

SPS Tune 4 1 3 1

LHC

Injection

2 2 2 1

Up to now the timing control of these different
hardware combinations was based on dedicated real-time
software strongly linked not only to the kicker hardware
configurations themselves but also to the beam process
where the system was used. With time, this approach has
resulted in a high number of software packages to be
maintained and to a high dependency of each software
package with machine operation conditions.

Additionally, as this approach has been used for more
than 40 years, a high diversity of electronic modules is
used to generate the delays needed to trigger the different
high voltage switches. As the access to these different
timing delays is strongly embedded inside the real-time
software, maintenance is now becoming more and more
difficult due to the obsolescence of the delay modules and
the difficulties to replace them without having to do a full
re-engineering of the actual software.

 In order to solve these two problems, a generic kicker
timing software constructed on the basis of the existing
set of standardised hardware components has been

Proceedings of ICALEPCS2015, Melbourne, Australia WEPGF127

Timing and Sync

ISBN 978-3-95450-148-9

1003 C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

developed and successfully deployed across a first set of
kicker systems.

KICKER TIMING SOFTWARE (KITS)
The control of a kicker is divided into two functional

subdomains: The Slow Control has the role to control the

operational state (On, Off, Standby, Faulty) high-

voltage pulsed generators and to protect the system

against any internal failure modes. The Fast Control has the role to control the dynamic

performance of kicker in accordance with the

operational parameters driven by the control room

and in perfect synchronization with the timing and

the beam of the machine. Through the control

modules of the equipment, it generates and

distributes the references and the necessary stimulus

for the RCPS and PFN to produce the kicks.

The KiTS, a generic software solution, has been

developed for homogenisation of the fast control of all the

kicker systems across the whole accelerator complex at

CERN. Then it is highly bound to the RCPS and PFN

hardware components, the control modules and the

timing.

Architecture

The operation of the KiTS has to be real time because it

should, depending on the settings sent by the control

room, provide the required stimulus and references by

following timing constraints that must be rigorously

respected.

At CERN the FESA Framework [1] has been

developed (Front-End Software Architecture) in order to

develop object oriented classes for the control of

accelerators equipment. FESA provides real time features

linked to interrupts coming either from the accelerator

central timing system or from the low level equipment

hardware (timing or external events synchronization) and

standard communication interfaces with external

applications. The KiTS has been developed on the basis

of this framework and thus benefits from all the features

intrinsic to FESA listed above.

As highlighted in the introduction, kicker systems at

CERN are based on a reduce set of hardware power

components (RCPS, PFN, switch and magnet). Usually

all kicker systems do not have the same number of

components and their association can differ significantly

from one equipment to the others.

In order to rationalise the kicker logical architecture,

the association of RCPS with PFN can be called a

Generator. On this basis, kicker systems can be

represented as different configurations of generator (see

Fig. 2) each composed of a set of RCPS and PFN.

Figure 2: Simplified software model of different type

kicker generator architecture

This hardware representation of a kicker system can

then be easily modelled within software through an object

oriented approach. The KiTS system offers a configurable

object-oriented model consisting of three independent

FESA classes (see Fig. 3).

MKPfnMKRCps

MKController
«uses»«uses»

Figure 3: KiTS simplified FESA class model

The MKRcps FESA class handles the features of the
RCPS hardware components. There are as many instances
of the MKRcps class as the number of active RCPS
elements required per kick in the system. This class

manages the kick strength references sent to the power

supplies and the timing delays related to the trigger the

resonant charging process to load the PFN just before

pulsing. It also controls the load balancing of the kick

strength distribution between the different RCPS

hardware components available for a kick.

The MKPfn FESA class handles the features of PFN
hardware components (i.e. high voltage switches
connected to it). There are as many instances of the
MKPfn class as the number of active PFN elements
required per kick in the system. This class manages the
kick synchronisation with beam, the fine internal
synchronisation when more than one magnet is used per
kick, the kick length and some internal delays when pre-

trigger signals are required. It generates the delays that
trigger the switches present on the PFN in order to
discharge it: A first set of delays that re-phase all PFNs relative to

a START event synchronised with the beam; A second set of delays per PFN for staggering the
PFNs with respect to each other.

WEPGF127 Proceedings of ICALEPCS2015, Melbourne, Australia

ISBN 978-3-95450-148-9

1004C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Timing and Sync

The MKController FESA class is the controller of the
KiTS system. It has only one instance (singleton) per
system (kicker). It gathers and analyzes information from
the control room and from the kicker to provide
parameters and operating data to MKRcps and MKPfn
classes. Furthermore, it can generate the required timing
when it cannot be obtained by timing or external sources
as an example when a kicker system has to be pulsed in
local mode.

Each instance of each class has a specific set of
configuration parameters in order to define to the
operational configuration. Thanks to this FESA model,
the KiTS can be adapted to most of kicker generator
configuration existing at CERN.

These 3 classes are also based on a second abstraction
framework which introduces two standardisation layers
(see Fig. 4): A business logic layer that homogenises the business

common features of control applications in order to
make the access to the hardware layer uniform, and
to allow to share the business logic commands
between the FESA actions. A hardware logical layer that homogenises the
hardware common features of control applications,
and makes uniform the access to the hardware
factory.

Thus, we obtain a system of classes where all the

classes have a homogeneous architecture where the

common features are generalized into Frameworks and

where the specific functions of the different logic layers

are well separated.

FESA class

FESA Actions

Real Time Server

Business Logic layer

Hardware logic

layer

F
E

S
A

 d
a

ta
 m

o
d

e
l

Figure 4: KiTS software layers

Hardware Abstraction

To interact with the active components of the kicker,

the real-time tasks uses different types of hardware

modules (see Tab. 2).

These hardware modules are not the same on the

different kicker systems, then the KiTS must be able to

use all these different types of hardware modules to

control the different kickers. To do so, it uses a software

library based on the factory design pattern which creates

and allows to use abstract software objects such as ADC,

DAC, DELAY, TDC, SAMPLER, etc. The factory

hardware of each abstract type contains the

implementation to drive several models of hardware

module.

Table 2: List of Modules in the Hardware Factory

Category Reference Manufacturer

DAC VMOD12A2

VMOD12A4

Janztec AG

Janztec AG

AG VMOD12E16 Janztec AG

Pulse delay CTR

V850 / V851

FMC-FD

CERN

HIGLAND
Technology

CERN

Time-to-

digital
converter

TSM

FMC-TDC

CERN

CERN

Sampler VD80

FMC-ADC

INCAA Computer
CERN

Digital I/O CTR

VMOD-TTL

CERN

Janztec AG

For example, the DELAY hardware factory contains

the implementation of the following modules V850,

V851, CTR, FMC-FD as shown in Fig. 5.

AbstractHardwareFactory

AbstractModule

DELAYHardwareFactory

AbstractDELAYModule

«uses»

V850DelayModule V851DelayModule CTRDelayModule FMCFDDelayModule

Figure 5: The Delay module factory simplified class
model

The list of hardware modules of a factory can be

change without any impact on the client applications code

as a generic API has be defined for each category of

module.

These abstract software objects allow the KiTS to

control the hardware modules of any type without

knowing the exact implementation of the hardware

modules used.

Therefore, this abstraction layer allows the KiTS to be

fully independent of the models of the hardware modules

used for the control of the kickers.

Timing

Kicker systems work with different timing sources

according to the accelerator to which they are used (LHC,

SPS, PS…) and with different families of timing events

depending of the beam process for which they are used

(injection, extraction, tuning). In some cases, some

specific events can also be generated by the real-time

Proceedings of ICALEPCS2015, Melbourne, Australia WEPGF127

Timing and Sync

ISBN 978-3-95450-148-9

1005 C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

control system itself (SPS tune kicker of SPS dump

kicker) a defined in dedicated configuration files.

To adapt to the different type of kicker timings, the

KiTS is based on an event model architecture scheduled

by four virtual events. This virtual event model serves as

generic timing structure for the KiTS to drive a kicker.

These four virtual events are associated by configuration

to hardware timing events from the accelerators central

timing.

Figure 6: TG-D Module

Before reaching the KiTS, the timing hardware events

are controlled by a Timing Generator module (see Fig. 6)

providing the following functionalities: Control of the correct scheduling of the four events; Generation of the four events when the kicker is

operated in local; Inhibit of all events in case of interlock condition

coming from the slow control.

The TG-D module also plays the role of local timing

generator which allows pulsing the kicker independently

of the central timing.

From the four primary events, it is possible to generate

as many secondary events as needed to control a kicker

(see Tab. 3). To be noted that a full beam process is

always enclosed between a Start Cycle and an End Cycle

event and that between these two events, as many sub-

processes as desired can be played.

Table 3: List of Primary and Secondary Events

Primary events Secondary events

Start Cycle (NC)

Forewarning (FW) Forewarning prepared

Before RCPS

Before prepulse

After prepulse

Prepulse

End Cycle (EC)

These primary and secondary events are used to trigger

the KiTS FESA class real time actions that will call the

KiTS FESA class business logic commands (see Tab. 4).

This model of virtual events allows the KiTS to be

easily adapted to specific timing requests of different

kicker systems in operational mode or test mode.

Table 4: List of KiTS FESA Classes Commands

Class Commands called by RT actions

MKController Reset Equipment Get User Context Start / End Timing Cycle New / End Cycle Forewarning, Prepulse, After Prepulse WatchDog

MKRcps Reset Equipment New / End Cycle Write / Read / Reset Vref Start / Stop Sampling Write Trigger WatchDog

MKPfn Reset Equipment New / End Cycle Write Fine Tuning Write Prepulse Write / Read Fast Timing Single PFN Voltage Acq Start / Stop Sampling Check / Notify PFN Voltage WatchDog

CONCLUSION

Thanks to its object oriented architecture, its virtual
timing model and its hardware abstraction library, the
KiTS has been successfully deployed on different types of
kicker system at CERN.

During LS1, the end of support of FESA2.10 has
required the migration of the KiTS real time kernel to
FESA3. This update has involved an extensive re-

engineering of the real-time code in order to remain fully
compliant with the new FESA framework. After the
successful migration and series of validation tests, the
KiTS has been easily deployed to all kicker systems
already equipped with it proving the benefits to use a
generic approach.

For the kicker systems not yet equipped, the use of the
KiTS instead of developing a dedicated software solution
has proven to be a more optimised approach reducing
significantly development and validation resources,
provided that all the required functionalities are already
integrated.

The KiTS will be facing more challenges that will
continue to profoundly assess its flexibility, modularity
and adaptability. Its planned deployment on the renovated
PS Booster distribution and consolidated SPS Beam
Dumping kicker systems are good examples.

REFERENCES

[1] M. Arruat et al., “Front End Software Architecture”,
WOPA04, ICALEPCS’11, Knoxville, TN, USA,

2011.

WEPGF127 Proceedings of ICALEPCS2015, Melbourne, Australia

ISBN 978-3-95450-148-9

1006C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Timing and Sync

