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Abstract 
At CERN, fast pulsed magnet (kicker) systems are used 

to inject, extract, dump and excite beams. Depending on 
their operational functionalities and as a result of the 
evolution of controls solutions over time, the timing 
controls of these systems are based on different hardware 
architectures that result in a large disparity of software 
solutions. A Kicker Timing Software (KiTS), based on a 
modular hardware and software architecture, has been 
developed with the objective to increase the homogeneity 
of fast and slow timing control for fast pulsed magnet 
systems. The KiTS uses a hardware abstraction layer and 
a configurable software model implemented within the 
Front-End Software Architecture (FESA) framework. It 
has been successfully deployed in the control systems of 
the LHC and SPS injection kickers, the SPS extraction 
kickers and the SPS tune measurement kickers. 

INTRODUCTION 

A kicker system must meet two requirements that are 
contradictory i.e. a high deflection strength and a short 
rise time of its magnetic field. Both properties are, for a 
given operational voltage, proportional to the product of 
the electrical current passing through the magnet and its 
length.  

In order to meet these contradictory requirements, the 
length of the magnet is reduced by splitting the system 
into several independently powered magnet modules. 
Generally, the powering circuit of a magnet module 
consists of a set of well identified hardware components:  A resonant charging power supply (RCPS) used to 

charge a pulse generator in order to decrease the time 
interval between two successive pulses and reduce 
the number of faulty shots;  A line type pulse generator based on a pulse forming 
network (PFN) supplying quasi rectangular current 
pulses with variable length and amplitude;  Up to three high voltage fast switches used to 
transfer in a controlled way the energy stored in the 
PFN to the magnet and to adjust the pulse length;  A coaxial transmission line (TL) connecting the 
generator to ferrite type magnets;  A ferrite magnet, built as lumped parameter delay 
lines and working in ultra-high vacuum;  A termination resistor (TR) matched to the 
characteristics impedance of the generator, 
transmission line and magnet and absorbing the pulse 
energy supplied by the generator. 

On this basis, the simplest kicker system comprises at 
least one PFN charged by one RCPS and discharged 
through the TL within one terminated magnet by one high 
voltage switch as shown in Figure 1. 

MAGNET TRSWITCH TLRCPS PFN

 

Figure 1: Simplest kicker system architecture 

Although peak current, system impedance, pulse shape, 

pulse duration and repetition rate are different for every 

system, the different hardware components have been 

standardised as far as possible, and, depending of the 
kicker functions (beam injection, extraction or excitation), 
the number of RCPS, PFN, high voltage switches and 
magnet are combined in more or less complex 
architecture in order to provide the required 
functionalities. Different types of combination used in the 
SPS and the LHC are summarised in Table 1. 

Table 1: Example of Kicker Architecture 

System RCPS 

per 

System 

PFN 

per 

RCPS 

Switch 

per 

PFN 

Magnet 
per 

PFN 

SPS 

Injection 

4 2 3 2 

SPS East 
Extraction 

1 5 2 1 

SPS West 
Extraction 

1 1 1 4 

SPS Tune 4 1 3 1 

LHC 

Injection 

2 2 2 1 

Up to now the timing control of these different 
hardware combinations was based on dedicated real-time 
software strongly linked not only to the kicker hardware 
configurations themselves but also to the beam process 
where the system was used. With time, this approach has 
resulted in a high number of software packages to be 
maintained and to a high dependency of each software 
package with machine operation conditions.  

Additionally, as this approach has been used for more 
than 40 years, a high diversity of electronic modules is 
used to generate the delays needed to trigger the different 
high voltage switches. As the access to these different 
timing delays is strongly embedded inside the real-time 
software, maintenance is now becoming more and more 
difficult due to the obsolescence of the delay modules and 
the difficulties to replace them without having to do a full 
re-engineering of the actual software.  

 In order to solve these two problems, a generic kicker 
timing software constructed on the basis of the existing 
set of standardised hardware components has been 

Proceedings of ICALEPCS2015, Melbourne, Australia WEPGF127

Timing and Sync

ISBN 978-3-95450-148-9

1003 C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s



  

developed and successfully deployed across a first set of 
kicker systems. 

KICKER TIMING SOFTWARE (KITS)  
The control of a kicker is divided into two functional 

subdomains:  The Slow Control has the role to control the 

operational state (On, Off, Standby, Faulty) high-

voltage pulsed generators and to protect the system 

against any internal failure modes.  The Fast Control has the role to control the dynamic 

performance of kicker in accordance with the 

operational parameters driven by the control room 

and in perfect synchronization with the timing and 

the beam of the machine. Through the control 

modules of the equipment, it generates and 

distributes the references and the necessary stimulus 

for the RCPS and PFN to produce the kicks. 

The KiTS, a generic software solution, has been 

developed for homogenisation of the fast control of all the 

kicker systems across the whole accelerator complex at 

CERN. Then it is highly bound to the RCPS and PFN 

hardware components, the control modules and the 

timing. 

Architecture 

The operation of the KiTS has to be real time because it 

should, depending on the settings sent by the control 

room, provide the required stimulus and references by 

following timing constraints that must be rigorously 

respected.  

At CERN the FESA Framework [1] has been 

developed (Front-End Software Architecture) in order to 

develop object oriented classes for the control of 

accelerators equipment. FESA provides real time features 

linked to interrupts coming either from the accelerator 

central timing system or from the low level equipment 

hardware (timing or external events synchronization) and 

standard communication interfaces with external 

applications. The KiTS has been developed on the basis 

of this framework and thus benefits from all the features 

intrinsic to FESA listed above. 

As highlighted in the introduction, kicker systems at 

CERN are based on a reduce set of hardware power 

components (RCPS, PFN, switch and magnet). Usually 

all kicker systems do not have the same number of 

components and their association can differ significantly 

from one equipment to the others. 

In order to rationalise the kicker logical architecture, 

the association of RCPS with PFN can be called a 

Generator. On this basis, kicker systems can be 

represented as different configurations of generator (see 

Fig. 2) each composed of a set of RCPS and PFN. 

 

 

Figure 2: Simplified software model of different type 

kicker generator architecture 

This hardware representation of a kicker system can 

then be easily modelled within software through an object 

oriented approach. The KiTS system offers a configurable 

object-oriented model consisting of three independent 

FESA classes (see Fig. 3). 

MKPfnMKRCps

MKController
«uses»«uses»

 

Figure 3: KiTS simplified FESA class model 

The MKRcps FESA class handles the features of the 
RCPS hardware components. There are as many instances 
of the MKRcps class as the number of active RCPS 
elements required per kick in the system. This class 

manages the kick strength references sent to the power 

supplies and the timing delays related to the trigger the 

resonant charging process to load the PFN just before 

pulsing. It also controls the load balancing of the kick 

strength distribution between the different RCPS 

hardware components available for a kick.  

The MKPfn FESA class handles the features of PFN 
hardware components (i.e. high voltage switches 
connected to it). There are as many instances of the 
MKPfn class as the number of active PFN elements 
required per kick in the system. This class manages the 
kick synchronisation with beam, the fine internal 
synchronisation when more than one magnet is used per 
kick, the kick length and some internal delays when pre-

trigger signals are required. It generates the delays that 
trigger the switches present on the PFN in order to 
discharge it:  A first set of delays that re-phase all PFNs relative to 

a START event synchronised with the beam;  A second set of delays per PFN for staggering the 
PFNs with respect to each other. 
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The MKController FESA class is the controller of the 
KiTS system. It has only one instance (singleton) per 
system (kicker). It gathers and analyzes information from 
the control room and from the kicker to provide 
parameters and operating data to MKRcps and MKPfn 
classes. Furthermore, it can generate the required timing 
when it cannot be obtained by timing or external sources 
as an example when a kicker system has to be pulsed in 
local mode. 

Each instance of each class has a specific set of 
configuration parameters in order to define to the 
operational configuration. Thanks to this FESA model, 
the KiTS can be adapted to most of kicker generator 
configuration existing at CERN. 

These 3 classes are also based on a second abstraction 
framework which introduces two standardisation layers 
(see Fig. 4):  A business logic layer that homogenises the business 

common features of control applications in order to 
make the access to the hardware layer uniform, and 
to allow to share the business logic commands 
between the FESA actions.  A hardware logical layer that homogenises the 
hardware common features of control applications, 
and makes uniform the access to the hardware 
factory.  

Thus, we obtain a system of classes where all the 

classes have a homogeneous architecture where the 

common features are generalized into Frameworks and 

where the specific functions of the different logic layers 

are well separated. 

 

FESA class

FESA Actions

Real Time Server

Business Logic layer

Hardware logic 

layer
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Figure 4: KiTS software layers 

Hardware Abstraction 

To interact with the active components of the kicker, 

the real-time tasks uses different types of hardware 

modules (see Tab. 2).  

These hardware modules are not the same on the 

different kicker systems, then the KiTS must be able to 

use all these different types of hardware modules to 

control the different kickers. To do so, it uses a software 

library based on the factory design pattern which creates 

and allows to use abstract software objects such as ADC, 

DAC, DELAY, TDC, SAMPLER, etc. The factory 

hardware of each abstract type contains the 

implementation to drive several models of hardware 

module.  

Table 2: List of Modules in the Hardware Factory 

Category Reference Manufacturer 

DAC VMOD12A2 

VMOD12A4 

Janztec AG 

Janztec AG 

AG VMOD12E16 Janztec AG 

Pulse delay CTR 

V850 / V851 

 

FMC-FD 

CERN 

HIGLAND 
Technology 

CERN 

Time-to-

digital 
converter 

TSM 

FMC-TDC 

CERN 

CERN 

Sampler VD80 

FMC-ADC 

INCAA Computer 
CERN 

Digital I/O CTR 

VMOD-TTL 

CERN 

Janztec AG 

 

For example, the DELAY hardware factory contains 

the implementation of the following modules V850, 

V851, CTR, FMC-FD as shown in Fig. 5. 

AbstractHardwareFactory

AbstractModule

DELAYHardwareFactory

AbstractDELAYModule

«uses»

V850DelayModule V851DelayModule CTRDelayModule FMCFDDelayModule

 

Figure 5: The Delay module factory simplified class 
model 

The list of hardware modules of a factory can be 

change without any impact on the client applications code 

as a generic API has be defined for each category of 

module. 

These abstract software objects allow the KiTS to 

control the hardware modules of any type without 

knowing the exact implementation of the hardware 

modules used. 

Therefore, this abstraction layer allows the KiTS to be 

fully independent of the models of the hardware modules 

used for the control of the kickers. 

Timing 

Kicker systems work with different timing sources 

according to the accelerator to which they are used (LHC, 

SPS, PS…) and with different families of timing events 

depending of the beam process for which they are used 

(injection, extraction, tuning). In some cases, some 

specific events can also be generated by the real-time 
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control system itself (SPS tune kicker of SPS dump 

kicker) a defined in dedicated configuration files.  

To adapt to the different type of kicker timings, the 

KiTS is based on an event model architecture scheduled 

by four virtual events. This virtual event model serves as 

generic timing structure for the KiTS to drive a kicker. 

These four virtual events are associated by configuration 

to hardware timing events from the accelerators central 

timing. 

 

 

Figure 6: TG-D Module 

Before reaching the KiTS, the timing hardware events 

are controlled by a Timing Generator module (see Fig. 6) 

providing the following functionalities:  Control of the correct scheduling of the four events;  Generation of the four events when the kicker is 

operated in local;   Inhibit of all events in case of interlock condition 

coming from the slow control. 

The TG-D module also plays the role of local timing 

generator which allows pulsing the kicker independently 

of the central timing. 

From the four primary events, it is possible to generate 

as many secondary events as needed to control a kicker 

(see Tab. 3). To be noted that a full beam process is 

always enclosed between a Start Cycle and an End Cycle 

event and that between these two events, as many sub-

processes as desired can be played. 

Table 3: List of Primary and Secondary Events 

Primary events Secondary events 

Start Cycle (NC)  

Forewarning (FW) Forewarning  prepared 

Before RCPS 

Before prepulse 

After prepulse 

Prepulse  

End Cycle (EC)  

 

These primary and secondary events are used to trigger 

the KiTS FESA class real time actions that will call the 

KiTS FESA class business logic commands (see Tab. 4).  

This model of virtual events allows the KiTS to be 

easily adapted to specific timing requests of different 

kicker systems in operational mode or test mode. 

 

 

Table 4: List of KiTS FESA Classes Commands 

Class Commands called by RT actions 

MKController  Reset Equipment  Get User Context  Start / End Timing Cycle  New / End Cycle  Forewarning,   Prepulse, After Prepulse  WatchDog 

MKRcps  Reset Equipment  New / End Cycle  Write / Read / Reset Vref  Start / Stop Sampling  Write Trigger  WatchDog 

MKPfn  Reset Equipment  New / End Cycle  Write Fine Tuning  Write Prepulse  Write / Read Fast Timing  Single PFN Voltage Acq  Start / Stop Sampling  Check / Notify PFN Voltage  WatchDog 

CONCLUSION 

Thanks to its object oriented architecture, its virtual 
timing model and its hardware abstraction library, the 
KiTS has been successfully deployed on different types of 
kicker system at CERN. 

During LS1, the end of support of FESA2.10 has 
required the migration of the KiTS real time kernel to 
FESA3. This update has involved an extensive re-

engineering of the real-time code in order to remain fully 
compliant with the new FESA framework. After the 
successful migration and series of validation tests, the 
KiTS has been easily deployed to all kicker systems 
already equipped with it proving the benefits to use a 
generic approach.  

For the kicker systems not yet equipped, the use of the 
KiTS instead of developing a dedicated software solution 
has proven to be a more optimised approach reducing 
significantly development and validation resources, 
provided that all the required functionalities are already 
integrated. 

The KiTS will be facing more challenges that will 
continue to profoundly assess its flexibility, modularity 
and adaptability. Its planned deployment on the renovated 
PS Booster distribution and consolidated SPS Beam 
Dumping kicker systems are good examples. 
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