
TRIGGER AND RF DISTRIBUTION USING WHITE RABBIT
T. Włostowski, J. Serrano, G. Daniluk, M. Lipiński, CERN, Geneva, Switzerland

F. Vaga, University of Pavia

Abstract
White Rabbit is an extension of Ethernet which allows

remote synchronization of nodes with jitters of around 10ps.
The technology can be used for a variety of purposes. This
paper presents a fixed-latency trigger distribution system
for the study of instabilities in the LHC. Fixed latency is
achieved by precisely time-stamping incoming triggers, no-
tifying other nodes via an Ethernet broadcast containing
these time stamps and having these nodes produce pulses
at well-defined time offsets. The same system is used to
distribute the 89us LHC revolution tick. This paper also
describes current efforts for distributing multiple RF signals
over a WR network, using a Distributed DDS (Direct Digital
Synthesis) paradigm.

SYNCHRONIZATION IN WHITE RABBIT
Both described systems require a precise time and fre-

quency reference, provided by a WR network and locked
to a GPS receiver or an atomic clock. WR achieves its sub-
nanosecond accuracy and low jitter by employing multiple
techniques:

• Distribution of frequency reference encoded in the phys-
ical data stream (Synchronous Ethernet).

• Coarse clock offset measurement by timestamping Eth-
ernet frames using the Precision Time Protocol (PTP,
IEEE1588).

• Fine offset compensation by tracking the phase shift
between the outgoing and incoming clock/data stream.

Further details on the synchronization algorithms used in
WR can be found in [1].

Figure 1: The White Rabbit PTP Core (WRPC).

The RF and Trigger distribution systems are interfaced
with the WR network by the WR PTP Core (WRPC) [2],
a standardized HDL block implementing the full WR syn-
chronization stack. The WRPC is integrated in the FPGA
firmware and delivers a 125 MHz reference frequency and
time-of-day (counters of seconds nS and 125 MHz clock
cycles nC). Furthermore, the WRPC can be used as general-
purpose Ethernet Media Access Controller (MAC), sending
and receiving Ethernet frames coming from the user’s FPGA
design (see Figure 1).

RF DISTRIBUTION
Introduction

The RF distribution system is part of a larger project which
aims to merge the two historically separate timing systems:

• General purpose timing, usually referenced to the Uni-
versal Coordinated Time (UTC) timescale, which usu-
ally drives beam injection/extraction, synchronizes cur-
rents in the magnets and provides UTC-traceable times-
tamps for any sort of events that may occur in the ma-
chine.

• Beam-synchronous timing, using the bunch or RF fre-
quency as the reference. Its natural applications are
driving the RF cavities, synchronizing data acquisition
from beam instrumentation or providing precise colli-
sion timestamps for event reconstruction (e.g. in the
LHC Experiments).

The classic way of distributing a frequency reference in
a timing system is to encode it in the data stream (using
Manchester or 8B10B encoding) at the master node and
recover it in the slave nodes using a Clock-Data Recovery
(CDR) PLL. Examples of such timing systems can be found
in [3] and [4]. This approach, however, can provide only one
reference frequency per each physical link, necessitating the
use of two separate timing networks. In many cases the ma-
chine’s equipment needs simultaneous access to both timing
systems, resulting in duplication of cabling and electronics.
Furthermore, many traditional systems experience trou-

bles tracking large frequency changes (e.g. ramping of the
RF in low energy or ion machines), due to bandwidth limi-
tations of the CDR PLLs in the deserializer chips.
The method we developed does not rely on physical fre-

quency encoding, but uses the common notion of time and
frequency provided by WR to drive RF synthesis in each
node of the system, as depicted in Figure 2. The master node
keeps is local DDS phase-locked to the RF reference input
and broadcasts the DDS tuning values calculated by its PLL
over the WR network. The slaves simply feed the received
data to their local DDS synthesizers. Since the reference
clocks are identical, the DDS in the slave node produces an
exact copy of the RF clock coming to the master node.

RF Encoding and Broadcasting
The RF encoding done by the master node is illustrated

in Figure 3. The central element of the system is the DDS
synthesizer, which produces a sinusoidal signal of arbitrarily
controlled frequency and phase. The synthesizer we used
is a custom-designed FPGA core attached to a high speed
DAC (Digital to Analog Converter). It employs the classical
frequency synthesis approach, using a phase accumulator

Proceedings of ICALEPCS2015, Melbourne, Australia WEC3O01

Timing and Sync

ISBN 978-3-95450-148-9

619 C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s



Figure 2: Idea of the RF distribution over White Rabbit.

and a sine lookup table, as described in [5]. We decided
to implement a custom synthesizer since in-phase RF re-
construction requires taking snapshots of the DDS phase
accumulator at fixed moments in WR time, a feature not
available in low-cost integrated DDS+DAC chips.
The core runs synchronously to the 125 MHz WR ref-

erence clock Fre f and at each clock cycle produces four
samples (phase shifted by one-fourth of the Fre f period),
forming a 500 MSPS data stream for the DAC. In order to
improve the dynamic range and spectral purity of the output
signal, we used linear interpolation of the sine lookup table
values and dithering of the sine signal with noise coming
from a pseudo-random number generator.
The output of the DAC passes through an anti-aliasing

low-pass filter, which limits the bandwidth of the system to
approximately 70 MHz, followed by a zero-crossing detector
which produces a square-wave clock signal of frequency
fDDS .
The DDS is programmed to a user-specified center fre-

quency FC , which is continuously adjusted to keep a fixed
phase with respect to the varying input RF reference Fin.
The input can be divided by a user-programmable integer
value, extending the frequency range above the bandwidth
limit of the DDS.

The adjustment is performed using a typical PLL scheme:
the clocks are compared by a Phase-Frequency Detec-
tor (PFD) and the resulting phase error is fed to a PI
(Proportional-Integral) regulator. The PI outputs the fre-
quency adjustment (tune) of the DDS f tune, closing the
feedback loop. In our implementation the PLL consists of
a discrete analog PFD followed by an Analog-to-Digital
converter (ADC) which drives a digital PI controller. The
analog PFD has been chosen to minimize the jitter.
As the RF frequency does not change very rapidly, the

controller can sample the phase error and produce a new
tune value with a relatively slow period TS (up to several
kHz). The PLL works synchronously to the beginning of
the current second (e.g. the first tune update is done when
nC = 0, the second one when nC = 1 · TS/8 ns and so on).
The values produced by the feedback loop are encapsu-

lated into Etherbone [6] packets, comprising:

• The current tune value and the timestamp it was taken
at. To simplify calculations, we send the current second
and the index iS of the tune sample with respect to the
beginning of the current second.

• The value of the DDS accumulator φM at the beginning
of the current second (when nC = 0), allowing the slave
node to compensate for the phase drift of the RF clock
caused by the latency of the Ethernet link.

• Configuration parameters: TS , fC and the identifier of
the master node to auto-configure the slave and allow
for multiplexing different RF signals within the same
network.

These messages provide all the information necessary for
the slave nodes to reproduce the RF signal.

Reception and Reconstruction
RF reconstruction is done at the slave side using the fol-

lowing algorithm:

1. Set a fixed reconstruction latency NREC , which defines
by how many samples of f tune the slave’s RF output
is delayed with respect to the master RF signal. The
latency must be obviously larger than the signal pro-
cessing and packet transmission/reception delays. In
the test system, we used NREC = 3 tune samples, cor-
responding to a 300 µs delay.

2. Filter the incoming packet stream to select only the
messages containing information about the RF signal
the slave is subscribed to.

3. Calculate the initial DDS accumulator value to align the
phase of the slave’s RF output with the master. Since
phase is the integral of frequency, the slave’s approx-
imate output phase after NREC tune samples can be
derived from the last NREC tune values (assuming that
the distributed frequency remains stable over the period
of NREC samples):

φS = φM +

NREC∑
i=1

TS

f tune[i]
(1)

4. Apply the phase correction by overwriting the DDS
accumulator with the value of φs .

5. Continuously feed the slave’s DDS with the received
tune values after delaying them by NREC samples.
For example, the first sample produced by the mas-
ter (having iS = 0) is written to the slave’s DDS when
nC =

NREC ·TS
8ns .

As the result, the slave’s DDS produces an in-phase copy
of the master RF clock. Note that the current algorithm
compensates the phase shift only once, so the phase will
drift over time due to changes of the RF frequency. A con-
tinuous phase compensation mechanism is currently being
developed.

WEC3O01 Proceedings of ICALEPCS2015, Melbourne, Australia

ISBN 978-3-95450-148-9

620C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Timing and Sync



Figure 3: Architecture of the DDS master node.

TRIGGER DISTRIBUTION
The WR Trigger Distribution (WRTD) system was de-

signed to provide transport of trigger pulses between the
devices involved in the LHC beam instability diagnostics.
The WRTD receives a trigger from a “cloud” of devices (e.g.
the Base Band Tune Monitor or the Transverse Damper)
upon the onset of an instability and distributes it to all rele-
vant devices (e.g. the Beam Pickup oscilloscopes) to freeze
their acquisition buffers, with low and fixed latency. The
assignment of trigger outputs to trigger inputs as well as the
latency is configurable by the user.

Figure 4: Trigger distribution over White Rabbit.

The concept of WRTD is shown in Figure 4:

• A pulse comes from a source device and is time tagged
using a Time-to- Digital Converter (TDC).

• The timestamp produced by the TDC is broadcast over
the WR network, with a user- assigned identifier, al-
lowing to uniquely identify the device the trigger came
from.

• A node interested in that trigger takes its origin times-
tamp, adds a certain (fixed) latency and produces a
pulse at the calculated moment.

Since all the nodes in the network are synchronized by
WR, the measured delay between input and output pulses is
equal to the value added to the origin timestamp.

Functionality
The current set of features comprises:

• Nodes in VME64x format, each with 5 inputs and 4
outputs.

• An output can be simultaneously assigned to 128 trigger
inputs, each with independently programmable delay.

• Single-shot and continuous triggering.

• Programmable input and output dead time.

• All parameters of triggering can be changed during
run-time.

• Extensive diagnostic features: detailed status of each
channel, injection of software trigger messages and
logging of all trigger events (including triggers missed
due to excessive latency).

IMPLEMENTATION
Hardware
Both presented systems are based on the CERN BE-CO-

HT’s Standard Hardware Kit [7] - a collection of carriers
and FPGA Mezzanine (FMC) boards. We chose the Sim-
ple VME64x FMC Carrier board (SVEC, [8]), hosting the
FPGA that runs the DDS/WRTD firmware and the three
mezzanines, interfacing the FPGA with the physical signals:

• DDS FMC [9], with a 500MSPSDAC, a phase detector
and clock distribution and conditioning circuits. This
card provides the hardware part of the RF Distribution
system.

• TDC FMC [10], a 5-channel TTL input Time-To-
Digital converter with 81ps resolution, used by the
WRTD trigger inputs.

• Fine Delay FMC [11], used as a programmable 4-
channel TTL pulse generator with 10 ps resolution,
outputting triggers in the WRTD.

FPGA AND SOFTWARE
The FPGA architecture is based on a mix of dedicated

VHDL IP cores and embedded soft CPUs, provided by the
Mock Turtle framework [12] and interconnected through the
Wishbone bus [13].

The trigger distribution FPGA firmware was built using
unmodified Fine Delay and TDCCores [11] [10]. Processing
of the network messages, configuration and delay adjustment

Proceedings of ICALEPCS2015, Melbourne, Australia WEC3O01

Timing and Sync

ISBN 978-3-95450-148-9

621 C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s



is handled by the soft CPUs. One processor is responsible
for the trigger inputs and the other for the trigger outputs, as
shown in Figure 5. No additional VHDL development was
necessary except for connecting the blocks together.

Figure 5: Architecture of the WRTD Hardware, FPGA and
software.

In the case of the RF distribution system, the VHDL core
provides only the DDS synthesizer and interfaces to the clock
distribution circuit and the phase detector. The complex part:
the entire feedback loop, packet encoding and phase com-
pensation is incorporated in the embedded software running
on the CPU, as its processing power and determinism are
sufficient for the required latencies (300 µs) and deadlines
(PLL update every 100 µs).

The carrier-mezzanine abstraction model we employed
made the designs independent from the host platform. Ini-
tially developed for VME64x, both systems can be easily
ported to other platforms (PCI Express or PXIe) by simply
changing a carrier-dependent VHDL template module.

The software stack consists of bare-metal (i.e. without
an operating system) real time applications that run on the
embedded CPUs, and user-space libraries providing the APIs
for trigger management (WRTD) and DDS configuration
(RF distribution). Both of them are built on top of the Mock
Turtle software, which provides a real-time development
environment, as well as a generic Linux device driver/library
to communicate between the host system and the real-time
applications.

PERFORMANCE
RF Distribution

Preliminary measurements were performed for f in = 352
MHz, fDDS = 44 MHz (input divided by 8) and an update
period TS = 100 µs (10 kHz sampling rate). The system
provided phase alignment of the slave node better than 1
nanosecond and rms jitter (100 Hz - 10 MHz) of 20 pi-
coseconds. The largest contribution to the jitter comes from
sub-optimal design of the WR reference clock generation
circuit on the DDS mezzanine, which will be improved in
the next version of the hardware, with an expected jitter of 3
ps rms.

Trigger Distribution
The number of trigger sources in the system and the trig-

ger repetition rate is limited by the network bandwidth and
maximum acceptable latency requirements. The system in-
stalled in the LHC is specified to transport 35000 trigger
pulses per second, which occupies approximately 5% of the
bandwidth of a Gigabit Ethernet link at the worst-case la-
tency of 300 µs (out of which, 200 µs is allocated for the
delays introduced by the fibers). This allows for distribution
of the 89 µs revolution tick using the WRTD network, for
the purpose of realigning asynchronously generated triggers
with the machine’s bunch crossing frequency.

PROJECT STATUS AND OUTLOOK
The RF distribution is part of a larger effort to design a

unified timing system, incorporating the general purpose
and beam synchronous timing in a single standardized net-
work. We have already proven the feasibility of transferring
an RF clock over an Ethernet link. In order to provide a
complete timing system, we are currently developing the
event distribution and reception infrastructure.
WRTD is a mature system, working in operational in-

stallations in the LHC and being integrated in the CERN
Controls software stack. Furthermore, the OASIS project
at CERN [14], which provides acquisition, correlation and
visualization of analog signals (a “distributed oscilloscope”)
is developing a new WRTD-based infrastructure. WRTD
will gradually replace the current trigger distribution system
based on a central trigger multiplexer and discrete cabling.
The RF and trigger distribution are only two examples

of applications of WR technology to solve real problems in
distributed real-time controls and data acquisition. In our
experience, the availability of a set of modular, reusable
open source hardware building blocks greatly reduces de-
velopment time and allows us to better fulfill the needs our
users.

REFERENCES
[1] J. Serrano, M. Cattin, E. Gousiou, E. van der Bij, T. Włos-

towski, G. Daniluk, M. Lipiński, “The White Rabbit Project”,
IBIC2013, Oxford, UK (2013).

WEC3O01 Proceedings of ICALEPCS2015, Melbourne, Australia

ISBN 978-3-95450-148-9

622C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Timing and Sync



[2] G. Daniluk, “White Rabbit PTP Core: the sub-nanosecond
time synchronization over Ethernet”, M.Sc. thesis, Warsaw
University of Technology (2012), http://www.ohwr.org/
documents/174

[3] Micro-Research Finland Oy website: http:
//www.mrf.fi/index.php/timing-system/
70-timing-system-structure

[4] D. Domínguez, J.J. Gras, J. Lewis, J.J. Savioz, J. Ser-
rano, F.J. Ballester, “An FPGA-based Multiprocessing CPU
for Beam-Synchronous Timing in CERN’s SPS and LHC”,
ICALEPCS2003, Gyeongju, Korea (2003).

[5] Analog Devices, “A Technical Tutorial on Digital Signal
Synthesis” (2009), http://www.ieee.li/pdf/essay/dds.
pdf

[6] M. Kreider, R. Baer, D. Beck, W. Terpstra, J. Davies, V. Grout,
J. Lewis, J. Serrano, T. Włostowski, “Open borders for system-
on-a-chip buses: A wire format for connecting large physics
controls”, Phys. Rev. ST Accel. Beams, vol. 15 (2012).

[7] E. Van der Bij, M. Cattin, E. Gousiou, J. Serrano, T. Włos-
towski, “CERN’s FMC Kit”, ICALEPCS2013, San Francisco,
USA (2013).

[8] Simple VME64x FMC Carrier project homepage: http://
www.ohwr.org/projects/svec/

[9] FMC DDS project homepage: http://www.ohwr.org/
projects/fmc-dac-600m-12b-1cha-dds/wiki

[10] FMC TDC project homepage: http://www.ohwr.org/
projects/fmc-tdc-1ns-5cha-hw/wiki

[11] FMC Fine Delay project homepage: http://www.ohwr.
org/projects/fmc-delay-1ns-8cha/wiki

[12] T. Włostowski, J. Serrano, F. Vaga, “Developing Distributed
Hard-Real Time Software Systems Using FPGAs and Soft
Cores”, THHA2I01, these proceedings, ICALEPCS’2015,
Melbourne, Australia (2015).

[13] Wishbone bus specification, version B.4: cdn.opencores.
org/downloads/wbspec_b4.pdf

[14] S. Deghaye, L. Bojtar, C. Charrondiere, Y. Georgievskiy,
F. Peters, I. Zharinov, “OASIS Evolution”, ICALEPCS2007,
Knoxville, USA (2007).

Proceedings of ICALEPCS2015, Melbourne, Australia WEC3O01

Timing and Sync

ISBN 978-3-95450-148-9

623 C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s


