Author: Serkez, S.
Paper Title Page
MOP056 SASE Characteristics from Baseline European XFEL Undulators in the Tapering Regime 159
 
  • I.V. Agapov, G. Geloni
    XFEL. EU, Hamburg, Germany
  • G. Feng, V. Kocharyan, E. Saldin, S. Serkez, I. Zagorodnov
    DESY, Hamburg, Germany
 
  The output SASE characteristics of the baseline European XFEL, recently used in the TDRs of scientific instruments and X-ray optics, have been previously optimized assuming uniform undulators without considering the potential of undulator tapering in the SASE regime. Here we demonstrate that the performance of European XFEL sources can be significantly improved without additional hardware. The procedure consists in the optimization of the undulator gap configuration for each X-ray beamline. Here we provide a comprehensive description of the X-ray photon beam properties as a function of wavelength and bunch charge. Based on nominal parameters for the electron beam, we demonstrate that undulator tapering allows one to achieve up to a tenfold increase in peak power and photon spectral density in the conventional SASE regime.  
 
MOP057 Proposal to Generate 10 TW Level Femtosecond X-ray Pulses from a Baseline Undulator in Conventional SASE Regime at the European XFEL 164
 
  • E. Saldin, V. Kocharyan, S. Serkez, I. Zagorodnov
    DESY, Hamburg, Germany
  • G. Geloni
    XFEL. EU, Hamburg, Germany
 
  Output characteristics of the European XFEL have been previously studied assuming an operation point at 5 kA peak current. Here we explore the possibility to go well beyond such nominal peak current level. We consider a bunch with 0.25 nC charge, compressed up to a peak current of 45 kA. An advantage of operating at such high peak current is the increase of the x-ray output peak power without any modification to the baseline design. Based on start-to-end simulations, we demonstrate that such high peak current, combined with undulator tapering, allows one to achieve up to a 100-fold increase in a peak power in the conventional SASE regime, compared to the nominal mode of operation. In particular, we find that 10 TW-power level, femtosecond x-ray pulses can be generated in the photon energy range between 3 keV and 5 keV, which is optimal for single biomolecule imaging. Our simulations are based on the exploitation of all the 21 cells foreseen for the SASE3 undulator beamline, and indicate that one can achieve diffraction to the desired resolution with 15 mJ (corresponding to about 3·1013 photons) in pulses of about 3 fs, in the case of a 100 nm focus at the photon energy of 3.5 keV.  
 
MOP058 Purified SASE Undulator Configuration to Enhance the Performance of the Soft X-ray Beamline at the European XFEL 169
 
  • V. Kocharyan, E. Saldin, S. Serkez, I. Zagorodnov
    DESY, Hamburg, Germany
  • I.V. Agapov, G. Geloni
    XFEL. EU, Hamburg, Germany
 
  The purified SASE (pSASE) undulator configuration recently proposed at SLAC promises an increase in the output spectral density of XFELs. In this article we study a straightforward implementation of this configuration for the soft x-ray beamline at the European XFEL. A few undulator cells, resonant at a subharmonic of the FEL radiation, are used in the middle of the exponential regime to amplify the radiation, while simultaneously reducing the FEL bandwidth. Based on start-to-end simulations, we show that with the proposed configuration the spectral density in the photon energy range between 1.3 keV and 3 keV can be enhanced of an order of magnitude compared to the baseline mode of operation. This option can be implemented into the tunable-gap SASE3 baseline undulator without additional hardware, and it is complementary to the self-seeding option with grating monochromator proposed for the same undulator line, which can cover the photon energy range between about 0.26 keV and 1 keV.  
 
MOP082 Perspectives for Imaging Single Protein Molecules with the Present Design of the European XFEL 238
 
  • G. Geloni
    XFEL. EU, Hamburg, Germany
  • V. Kocharyan, E. Saldin, S. Serkez, I. Zagorodnov
    DESY, Hamburg, Germany
  • O. Yefanov
    CFEL, Hamburg, Germany
 
  European XFEL aims to support imaging and structure determination of biological specimens between less than 0.1 microns and 1 micron size with working photon energies between 3 keV and 16 keV. This wide operation range is a cause for challenges to the focusing optics. A long propagation distance of about 900 m between x-ray source and sample leads to a large lateral photon beam size at the optics. Due to the large divergence of nominal X-ray pulses with durations shorter than 10 fs, one suffers diffraction from mirror apertures, leading to a 100-fold decrease in fluence at photon energies around 4 keV, which seem ideal for imaging of single biomolecules. Moreover, the nominal SASE1 is very far from the level required for single particle imaging. Here we show how it may be possible to optimize the SPB instrument for single biomolecule imaging with minimal additional costs and time, achieving diffraction without destruction at near-atomic resolution with 1013 photons in a 4 fs pulse at 4 keV photon energy and in a 100 nm focus, corresponding to a fluence of 1023 ph/cm2. This result is exemplified using the RNA Pol II molecule as a case study.  
 
MOP090 Soft X-ray Self-seeding Simulation Methods and their Application for LCLS 264
 
  • S. Serkez
    DESY, Hamburg, Germany
  • Y. Ding, Z. Huang, J. Krzywinski
    SLAC, Menlo Park, California, USA
 
  Self-seeding is a promising approach to significantly narrow the SASE bandwidth of XFELs to produce nearly transform-limited pulses. We study radiation propagation through the grating monochromator installed at LCLS. The monochromator design is based on a toroidal variable line spacing grating working at a fixed incidence angle mounting without an entrance slit. It covers the spectral range from 500eV to 1000eV. The optical system was studied using wave optics method to evaluate the performance of the self-seeding scheme. Our wave optics analysis takes into account the finite size of the coherent source, third-order aberrations and height error of the optical elements. Wave optics is the only method available, in combination with FEL simulations, to simulate performance of the monochromator without exit slit. Two approaches for time-dependent simulations are presented, compared and discussed. Also pulse-front tilt phenomenon effect is illustrated.  
 
MOC03 Radiation Properties of Tapered Hard X-ray Free Electron Lasers 300
 
  • C. Emma, C. Pellegrini
    UCLA, Los Angeles, California, USA
  • S.D. Chen
    NCTU, Hsinchu, Taiwan
  • K. Fang, C. Pellegrini, J. Wu
    SLAC, Menlo Park, California, USA
  • S. Serkez
    DESY, Hamburg, Germany
 
  We perform an analysis of the transverse coherence of the radiation from a TW level tapered hard X-ray Free Electron Laser (FEL). The radiation properties of the FEL are studied for a Gaussian, parabolic and uniform transverse electron beam density profile in a 200-m undulator at a resonant wavelength of 1.5 Angstrom. Simulations performed using the 3-D FEL particle code GENESIS show that diffraction of the radiation occurs due to a reduction in optical guiding in the tapered section of the undulator. This results in an increasing transverse coherence for all three transverse electron beam profiles. We determine that for each case considered the radiation coherence area is much larger than the electron beam spot size, making X-ray diffraction experiments possible for TW X-ray FELs.  
slides icon Slides MOC03 [3.797 MB]  
 
TUP028 Mode Contents Analysis of a Tapered Free Electron Laser 437
 
  • S.D. Chen, K. Fang, X. Huang, C. Pellegrini, J. Wu
    SLAC, Menlo Park, California, USA
  • S.D. Chen, C.-S. Hwang
    NCTU, Hsinchu, Taiwan
  • C. Emma, C. Pellegrini
    UCLA, Los Angeles, California, USA
  • K. Fang, S.-Y. Lee
    Indiana University, Bloomington, Indiana, USA
  • C.-S. Hwang
    NSRRC, Hsinchu, Taiwan
  • S. Serkez
    DESY, Hamburg, Germany
 
  For the ultimate use for the scientific experiments, the free electron laser (FEL) will propagate for long distance, much longer than the Rayleigh range, after exiting the undu- lator. To characterize the FEL for this purpose, we study the electromagnetic field mode components of the FEL photon beam. With the mode decomposition, the transverse coher- ence can be analyzed all along. The FEL here in this paper is a highly tapered one evolving through the exponential growth and then the post-saturation taper. Modes contents are analyzed for electron bunch with three different types of transverse distribution: flattop, Gaussian, and parabolic. The tapered FEL simulation is performed with Genesis code. The FEL photon beam transverse electric field is decom- posed with Gaussian-Laguerre polynomials. The evolutions of spot size, source location, and the portion of the power in the fundamental mode are discussed here. The approach can be applicable to various kind scheme of FEL.  
 
TUP030 Mode Component Evolution and Coherence Analysis in Terawatt Tapered FEL 446
 
  • K. Fang, S.D. Chen, X. Huang, C. Pellegrini, J. Wu
    SLAC, Menlo Park, California, USA
  • S.D. Chen
    NCTU, Hsinchu, Taiwan
  • C. Emma, C. Pellegrini
    UCLA, Los Angeles, California, USA
  • K. Fang
    Indiana University, Bloomington, Indiana, USA
  • C.-S. Hwang
    NSRRC, Hsinchu, Taiwan
  • S. Serkez
    DESY, Hamburg, Germany
 
  A fast and robust algorithm is developed to decompose FEL radiation field transverse distribution into a set of orthonormal basis. Laguerre Gaussian and Hermite Gaussian can be used in the analysis. The information of mode components strength and Gaussian beam parameters allows users in downstream better utilize FEL. With this method, physics of mode components evolution from starting stage, to linear regime and post saturation are studied with detail. With these decomposed modes, correlation function can be computed with less complexity. Eigenmodes of the FEL system can be solved using this method.  
 
TUC02
Soft X-ray Self-seeding Setup and Results at LCLS  
 
  • D.F. Ratner, J.W. Amann, D.K. Bohler, M. Boyes, D. Cocco, F.-J. Decker, Y. Ding, D. Fairley, Y. Feng, J.B. Hastings, P.A. Heimann, Z. Huang, J. Krzywinski, H. Loos, A.A. Lutman, G. Marcus, A. Marinelli, T.J. Maxwell, S.P. Moeller, P.A. Montanez, D.S. Morton, H.-D. Nuhn, D.R. Walz, J.J. Welch, J. Wu
    SLAC, Menlo Park, California, USA
  • K. Chow, L.N. Rodes
    LBNL, Berkeley, California, USA
  • U. Flechsig
    PSI, Villigen PSI, Switzerland
  • S. Serkez
    DESY, Hamburg, Germany
 
  The soft X-ray self seeding program was designed to provide near transform-limited pulses in the range of 500 eV to 1000 eV. The project was a three-way collaboration between SLAC, Lawrence Berkeley National Lab, and the Paul Scherrer Institute in Switzerland. Installation finished in the Fall of 2013, and after the early stages of commissioning we have measured up to 0.5mJ pulse energy and resolving powers of up to 5000 across the design wavelength range, representing a several-fold increase in the brightness compared to the normal LCLS operating mode. Future work will aim to increase the total pulse energy and establish self-seeding as a robust user operation mode.  
slides icon Slides TUC02 [10.464 MB]