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Abstract

A fast and robust algorithm is developed to decompose

FEL radiation field transverse distribution into a set of or-

thonormal basis. Laguerre Gaussian and Hermite Gaus-

sian can be used in the analysis. The information of mode

components strength and Gaussian beam parameters allows

users in downstream better utilize FEL. With this method,

physics of mode components evolution from starting stage,

to linear regime and post saturation are studied with detail.

With these decomposed modes, correlation function can be

computed with less complexity. Eigenmodes of the FEL

system can be solved using this method.

INTRODUCTION

Free Electron Laser (FEL) is a powerful source that gener-

ates high brightness radiation for scientific research. Radia-

tion at TW level may be able to resolve a single molecule im-

age [1,2]. One way to improve brightness is to increase total

photon number by tapering the undulator. This scheme has

been proposed in [3], Now it is arousing the FEL commu-

nity’s interest [4,5]. Recently the effect different transverse

electron distributions on taper efficiency is also studied.

The transverse content for a radiation is an important

property of FEL. It may provide useful information in the

down stream. Also as it’s pointed out in [5], the transverse

content plays an important role in tapered FEL. This paper

may provide insight into transverse content by decomposing

electric field transverse distribution generated from Genesis

1.3 [6] into Hermite Gaussian modes. With this decomposi-

tion, correlation function can be computed with less effort.

Moreover, this method also provides a tool to study eigen-

modes of the FEL system.

MODE DECOMPOSITION METHOD

In this study we decompose electric field into a set of

Hermite Gaussian modes. Hermite Gaussian modes is a set

of orthonormal basis. Two dimensional Hermite Gaussian

modes allows x and y directions to have different distribu-

tions. The transverse radiation field along the undulator can

be written as

E(r; z) =
∑
amn (z)Hm(

√
2

w(z)
x)Hn (

√
2

w(z)
y) exp(−ζr2).

(1)

Here ζr =
1
w2 , ζi =

k
2R

. w is the spot size of fundamental

Gaussian mode, while R describes the wave front curvature.

In this work, we use orthogonal condition to find amplitude

amn for each Hermite-Gaussian mode. Wavefront curva-

ture need to be eliminated before applying the orthogonal

condition. To fit R, a lens with focal length f is applied

to electric field. Then beam waist of the modified field is

found through propagation. Curvature radius is found when

the spot size of modified electric field diverges in both for-

ward and backward propagation. After eliminating wave-

front curvature, orthogonal condition is applied to extract

mode amplitudes.

amn =

∫
E(r; z)Hx (

√
2

w
x)Hy (

√
2

w
y) exp(−ζr2). (2)

This integral has to be evaluated in a discrete form with fi-

nite cutoff, nevertheless good accuracy can still be achieved

when w falls in some range.

To test the orthogonality, we define a matrix elements

Ci j =
∑
q

Hm (
√

2xq
w

)Hn (
√

2yq

w
)Hk (

√
2xq
w

)Hl (
√

2yq

w
)

exp(−ζr2
q )

2ΔxΔy
w2

, (3)

where i and j has one to one correspondence with (m,n)
and (k, l). Fig. 1 describes how the orthogonality is main-

tained in this numerical method. In the region where w is

small, there is not enough sampling rate to resolve struc-

tures in Hermite Gaussian modes. Therefore orthogonality

condition is degraded. In large w region, numerical inte-

gral is inaccurate because of the cutoff error. Numerical

integral could provide accurate expansion for electric field

in basis with moderate w. To expand electric field in w

where orthogonality condition is not preserved, we could

first expand electric field with moderate w. Then expansion

in other parameter w′ can be computed by transformation

method. The amplitudes in w′ basis are connected with am-

plitudes in w basis with

amn (w′) =
∑
k, j

Tm,k (w′ |w)Tn, j (w′ |w)ak j (w). (4)

Here Tm,k (w′ |w) =
∫
Hm (

√
2

w′ x)Hk (
√

2
w
x) exp(− x2

w2 −
x2

w′2 )dx.
Electric field can be decomposed into Hermite-Gaussian

modes along the undulator in a tapered FEL. Yet, there
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Figure 1: Figure plots how R = |I − C |2 varies with w

for general FEL simulation condition. 191 grid points are

evenly distributed within a [−180μm,180μm] window in

both directions. Different color corresponds to different

maximal index number. For example, N = 4 corresponds

to 16 modes with index 0 ≤ m,n ≤ 3.

is free parameter w needs to be determined, for Hermite-

Gaussian is a complete set of basis for different w. In lin-

ear regime, w(z) describes the Gaussian mode that has the

strongest coupling to the electrons, i.e. electric mode that

has maximal growth rate. And in this regime, w(z) can be

computed using 3D FEL theory, e.g. [7]. In this work, we

are going to obtain w(z) by maximizing fundamental mode

power. The same method can then be extended to post satu-

ration regime where 3D theory is hard to solve. Fig. 2 plots

the power of high order modes κ =
∑

mn�0
|amn |2/|a00 |2 as a

function of w at different locations of the undulator. κ for

different locations have similar dependency on w, i.e. there

is a w that could minimize κ. This could be explained as fol-

lows. For electric field with some radiation size σr , it can

be described by fewer terms in Hermite-Gaussian basis with

w ≈ 2σr than other w. For case w is significantly larger

than 2σr , high order modes are added destructively to con-

struct the electric field. For case w is significantly smaller

than 2σr , high order modes are added constructively.

At the early stage of FEL process, about half of the FEL

power is in the high order modes (minimal κ for L = 10m).

This may also be seen from some structures in the core of

the electric field distribution (Fig. 3). These structures indi-

cate the existence of high order mode component. And the

decomposition result (Fig. 4) is able to reconstruct these

structures. High portion of high order mode is a result of

the fact that the input seed is not the eigenmodes of the

FEL interaction. Therefore it couples to many high order

mode components. And as the FEL interaction proceeds,

the fundamental mode, with the highest grow rate, starts to

dominate. About 90% of the power is in the fundamental

mode when FEL reaches saturation at z = 30m (Fig. 2). As

FEL interaction proceeds further into post saturation, high

order mode components start to increase, i.e. κ function has

higher minimal value after saturation point after 30m.

0 1 2 3 4
x 10−5

0

0.2

0.4

0.6

0.8

1

w/2

κ

10m
15m
20m
25m
30m
40m
50m
60m
90m
120m
150m
180m

Figure 2: Here plots the total power of all the high or-

der modes for different w. We choose w such κ =∑
mn�0

|amn |2/|a00 |2 is minimized.

COHERENCE ANALYSIS

With the decomposed electric field, coherence function

can be computed with less effort.

Γ(r1,r2) =
〈E(r1)E∗(r2)〉√
〈|E(r1) |2〉〈|E(r2) |2〉

(5)

Then the time average can be computed as,

〈E(r1)E∗(r2)〉 =
∑
〈amna∗pq〉Hm (

√
2

w
x1)Hn (

√
2

w
y1)

Hp (
√

2

w
x2)Hq (

√
2

w
y2) exp(−r2

1
+ r2

2

w2
),

(6)

where 〈amna∗pq〉 =
∫
amn (s)a∗pq (s)ds. The advantage of

this method is that the ensemble average 〈. . .〉 only need to

compute once.

Fig. 5 plots the one point correlation function, i.e. r1 = 0

in Eq. 5, in different regimes. At the beginning, only the

central area has high correlation. As FEL process evolves,

radiation field is diffracted from the center, therefore phase

information is brought to the outer region. There is some

ring structure in the correlation function. These structures

come from the diffraction in the undulator gap. As FEL

reaches post saturation regime, diffraction effect becomes

even more important, resulting in a large coherent area.

MODE EVOLUTION

In FEL process, electric field evolution can be expressed

as

ÔFEL (Ψ1 + Ψs ) = Ψ̃1

= Ψ2 + ÔFELΨs . (7)
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Figure 3: Electric field at 10m from Genesis simulation.
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Figure 4: Reconstructed field from Hermite Gaussian

modes, E =
∑

m,n=0
amnHm (

√
2

w
x)Hn (

√
2

w
y) exp(− x2

+y2

w2 ).
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Figure 5: One point correlation function is plotted at differ-

ent locations of the undulator. Four plots represent initial

stages, linear regime, saturation and postsaturation respec-

tively. Coherence area is increasing as FEL process pro-

ceeds.

Here Ψ1,2 are the state of transverse distribution at two dif-

ferent locations, while Ψs represents the state accounting

for bunching at location one. ÔFEL is a non self-adjoint

linear operator that evolves electric field from location 1 to

location 2. Genesis is used to compute this evolution. Trans-

verse electric field distributionΨ1 interacts with particle dis-

tributionΨs in Genesis. The output electric field Ψ̃1 is then

a linear superposition of both Ψ2 and ÔFELΨs . Therefore

the evolved stateΨ2 fromΨ1 is computed by Ψ̃1−ÔFELΨs ,

where ÔFELΨs is computed by simulating by setting input

radiation zero.

Our simulation scheme using Genesis is described as fol-

lows,

• Simulate FEL process through an Undulator section

U1 with the output electric field transverse distribution

E1 and electron distribution f1(�x).

• Decompose transverse profile E1 into Hermite Gaus-

sian modes {HGn}.

• Simulate each Hermite Gaussian modes HGn indepen-

dently with electron distribution f1(�x) for another sec-

tionU2 with output field E2n .

• Simulate electron beam f (�x) without electric field for

U2 with output field Eb .

• HG′n is then obtained by subtracting Eb from E2n .

Fig. 6 plots the evolution of the first four Hermite Gaus-

sian modes from 10m to 30m. The first two columns plot

the input Hermite Gaussian modes and final field. The third

column plots the free propagation of each input mode over

20m. The modes in the second column deviate from both

the first and third column indicating interaction with elec-

tron beam. Power amplification for each Hermite Gaussian

mode is plotted in Fig. 7. For 10m to 30m, where is the

linear regime, the fundamental mode has the strongest cou-

pling to the electron beam and therefore the maximal power

gain. Therefore the transverse distribution of electric field

is able to maintain a Gaussian like distribution in linear

regime. For the post saturation regime, e.g. from 50m to

70m, higher order modes HG1,0 and HG0,1 have stronger

coupling to the electron beam than the fundamental mode

(Fig. 7). This agrees with the increase of ratio of high order

mode we find out in mode decomposition as FEL proceed

to post saturation.

HG′n is then decomposed into Hermite-Gaussian mode,

ÔFELφn =
∑
αpnφp . (8)

Eigenmodes of ÔFEL can then be computed from this {α}

matrix. Assuming the qth eigenmode is defined as
∑
β
q
nφn ,

ÔFEL

∑
n

β
q
nφn = λ

q
∑
n

β
q
nφn (9)

=

∑
n,p

β
q
nαpnφp . (10)
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(a) (b) (c)

Figure 6: Column(a) plots the input Hermite Gaussian

modes at the entrance of the undulator section. Column(b)

plots the resultant field for each Hermite Gaussian mode at

the end. Column(c) plots the free propagation result across

the same distance as a comparison.
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Figure 7: Power gain is computed by dividing the power of

the input mode HGn by the power of the output mode HG′n .

Since ÔFEL is a non-self-adjoint operator, {βq} are not or-

thogonal vectors and {λq} are complex eigenvalues. Fig. 8

plots the first four eigenmodes for the ÔFEL from 15m to

25m. The first mode is a Gaussian like mode. The second

and third mode are dipole mode like, and with different ori-

entations. The fourth mode is azimuthal symmetric and has

one node in radial direction. The first and fourth mode are

usually found as the first and second mode in 3D FEL the-

ory. In these theories, mostly an azimuthal symmetry in

electric field is assumed. In our simulation, we are able

to find modes that break this symmetry since the Hermite

Gaussian basis has this degree of freedom. As a compari-

son, we plot the interaction of these eigenmodes with elec-

tron bunch and their free propagation results for the same

distance. Eigenmodes maintain their distribution through

interaction with electron beam. If the eigenmodes are prop-

agated freely across the same distance, as is shown in col-

umn (c), distribution will be strongly diffracted.

(a) (b) (c)

Figure 8: Column (a) plots the eigenmodes at the entrance

of the undulator. Column (b) plots output field at the end

of the undulator for each mode respectively. Column (c)

shows the free propagation result across the same distance

for each eigenmode.

CONCLUSION

In this paper, we propose a mode decomposition method

using Hermite Gaussian mode as basis. We find that there

are some region of w, within which the orthogonal condi-

tion is well satisfied. Wavefront curvature R is fitted by free

propagation method. And w is chosen such that the fun-

damental Gaussian mode has the most dominating power.

With this method, we are able to analyze mode component

in different regimes. The fundamental mode is found to

maintain a good portion of power in a tapered FEL. Co-

herence function is computed using the decomposed mode

amplitude. Mode evolution is also studied based on this

mehtod. The eigenmodes of the FEL operator is computed

by simulating Hermite Gaussian mode interacting with elec-

tron beam individually.
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