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Abstract

Self-seeding is a promising approach to significantly

narrow the Self-Amplified Spontaneous Emission (SASE)

bandwidth of XFELs to produce nearly transform-limited

pulses. We study radiation propagation through the grating

monochromator installed at Linac Coherent Light Source

(LCLS). The monochromator design is based on a toroidal

Variable Line Spacing (VLS) grating working at a fixed in-

cidence angle mounting without an entrance slit. It covers

the spectral range from 500 eV to 1000 eV. The optical sys-

tem was studied using wave optics method to evaluate the

performance of the self-seeding scheme. Our wave optics

analysis takes into account the finite size of the coherent

source, third-order aberrations and height error of the opti-

cal elements. Wave optics is the only method available, in

combination with FEL simulations, to simulate performance

of the monochromator without exit slit. Two approaches for

time-dependent simulations are presented, compared and

discussed.

INTRODUCTION

Self-seeding is a promising approach to significantly nar-

row the SASE bandwidth and to produce a nearly transform-

limited pulses [1]- [10]. Recently a soft X-ray Self-seeding

setup was installed in LCLS [11]- [15] and is currently under

commissioning [16].

In general, a self-seeding setup consists of two undula-

tors separated by a photon monochromator and an electron

bypass, normally a four-dipole chicane (see Fig. 1). Both

undulators are resonant at the same radiation wavelength.

The SASE radiation generated by the first undulator (SASE

undulator) passes through the narrow-band monochroma-

tor. A monochromatic pulse is created, which is used as a

coherent seed in the second undulator (seeded undulator).

Chromatic dispersion effect in the bypass chicane smears

out the microbunching in the electron bunch produced by

the SASE lasing in the SASE undulator. The electrons and

the monochromatized photon beam are recombined at the

entrance of the seeded undulator, and the radiation is ampli-

fied by the electron bunch until saturation is reached. The

required seed power at the beginning of the seeded undulator

must dominate over the shot noise power within the gain

bandpass, which is order of a kW in the soft X-ray range.

Figure 1: The compact soft x-ray self-seeding system to be

located in U9. The grating is a toroidal VLS grating, M1 is

a rotating plane mirror, M2 a tangential cylindrical mirror,

and M3 a plane mirror used to steer the beam. Adapted

from [13].

LCLS SOFT X-RAY SELF-SEEDING
SETUP LAYOUT

The overall self-seeding setup consists of three parts: the

SASE undulator, the self-seeding grating monochromator

and the output seeded undulator in which the monochro-

matic seed signal is being amplified. The seeded undulator

consists of two sections. The first section is composed by

an uniform undulator, and the second section - by a tapered

undulator. The transform-limited seed pulse is exponentially

amplified passing through the first uniform part of the seeded

undulator. Finally, in the second part of the seeded undulator

the monochromatic FEL output is enhanced after saturation.

The Soft X-ray Self-Seeding (SXRSS) monochromator

for LCLS was introduced in [13] and is based on a toroidal

variable-line-spacing (VLS) grating, a steering plane mirror,

a slit, a spherical mirror and another plane mirror (Fig. 1).

The toroidal VLS grating is illuminated by a SASE FEL

radiation produced by the SASE undulator with the source

in undulator sections 7 or 8 (depends on set-up). Transverse

coherence of a SASE FEL allows one to avoid installation

of an entrance slit. The plane mirror M1 is used to steer

the certain wavelength of an angularly dispersed radiation

to the slit. The spherical mirror M2 re-images the radiation

from the slit position to the re-imaging point at the entrance

to the seeded undulator. The plane mirror M3 reflects the

radiation to the seeded undulator, allowing two additional
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degrees of freedom for an overlap of the electron beam and

the monochromatic radiation.

OPTICS MODELING
In order to simulate transformation of the radiation after

passing the entire optical system of the monochromator, we

model an effect of a different optical components. Propaga-

tion is carried out through an every component sequentially,

as the radiation approaches them. Drift spaces are simu-

lated in between. Simulation is based on a single frequency

beam propagation method. Fresnel propagator is used to

simulate drift spaces (e.g. [17]) and phase shifter method -

to simulate optical elements. [18]. A phase-shifter model

is used to simulate a focusing effect of the toroidal grating,

M2 mirror and contribution of height errors of an optical

element surfaces. This model implies an introduction of a

shift to a phase of radiationΔΦ(x, y). This shift is dependent
on a transverse position at radiation distribution and only

changes the phase of the reflected beam without changing its

amplitude. It allows one to change the wavefront curvature,

therefore field behavior after propagation. In practice, ΔΦ

represents the deformation of the wavefront in propagation

direction divided by the wavelength.

Free Space Propagation
Let’s consider electric field in a space-time domain

�E(t, x, y) expressed in Cartesian coordinate system. In this
domain radiation is exported from the FEL simulation code

GENESIS [19]. Applying temporal and frequency Fourier

transforms one obtains the electric field in inverse space-

frequency domain - �̂E(ω, kx , ky ).
Radiation distribution with frequency ω = k0c at a dis-

tance z after free space propagation one can calculate with a
spatial-frequency response function in paraxial approxima-

tion [17]:

H (ω, kx , ky , z) � exp[ik0z] exp
[
− iz
2k0

(k2x + k2y )
]
,

�̂E(ω, kx , ky , z) = �̂E(ω, kx , ky ,0)· H (ω, kx , ky , z) . (1)

Grating Modeling
We model the toroidal VLS grating as a sum of indepen-

dent contributions of a sagittal focusing element, a tangential

focusing element, C12 and C30 aberrations, a surface height

error and a wavelength-dependent tilt, responsible for angu-

lar dispersion. Also, asymmetry of incidence and diffraction

angles has to be accounted. Since angles of incidence and

diffraction from a grating are not equal, a radiation is re-

sized transversely in dispersive dimension by the grating

asymmetry parameter b = sin θi/ sin θd .
Radiation distribution at any optical component in our

simulation is modified by a phase-shifter in the following

way:

�̄E(ω, x, y) = �̄E0(ω, x, y) exp
[
iΔΦ(x, y, ...)

]
. (2)

Figure 2: Schematic diagram of a VLS grating element. The

VLS grating (left) is represented by a contribution of a planar

grating with fixed line spacing and a thin lens (right).

Here ΔΦ is a phase shift that depends on various parameters,

depending on effect we want to model.

Tangential and sagittal curvatures of the toroidal grating

act as an independent cylindrical lenses with the following

curvature-determined focal lengths:

f curvtang =
Rtang

1/θd + θi/θ
2
d

,

f curvsag =
Rsag

θi + θd
. (3)

Here Rtang and Rsag are tangential and sagittal radii of

curvature, θi and θd are incidence and diffraction angles
respectively. Eq. 3 shows that focal lengths are wavelength-

dependent, since θd = arccos(cos θi − λD0), accordingly to
the grating equation.

Beside a toroidal curvature, the grating has a variable line

spacing with the following line density: D = D0 + D1l +
D2l2 [lines/mm], where l is a length along the grating.
The VLS focusing contribution may be modeled via intro-

duction of another focusing element in a tangential plane [20]

with the following focal length [21]:

f vl stang =
sin2 θd

D1λ
. (4)

Toroidal reflecting surfaces introduce aberrations. Two

most important contributions are determined by twofold

astigmatism and coma aberrations with C12 and C ′
30
coeffi-

cients correspondingly [22], [21]:

C12 = − 1
2

(
− sin θi cos θi

Rsag z1
+

cos θi
z2
1

+
sin θd cos θd

Rsag z2
− cos θd

z2
2

)
,

C ′
30 =

λnD2

3
+

(
sin2 θi
z1

− sin θi
Rtang

)
cos θi
2z1

−
(
sin2 θd

z2
− sin θd

Rtang

)
cos θd
2z2
. (5)

Here z1 and z2 are distances from an optical element [grat-

ing] to an object and an image correspondingly and n is

a diffraction order which our case is equal to unity. The

quadratic VLS coefficient D2 introduces a phase shift, that

is proportional to x3, therefore it is used to compensate the
effect of C ′

30
aberration term.
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Figure 3: Thin-shifter-like effect of surface height errors

for a small mean square of surface displacement, concept

adapted from [23].

Aberrations are eliminated when C ′
30
= 0 and C12 = 0

criteria are fulfilled.

In order to simulate time-dependent phenomena of the

grating’s resolving power one needs to take into account

grating dispersion. We propose to induce a wavefront tilt,

according to an angular dispersion of the grating. Each

wavelength is reflected from the grating at a different an-

gle. Having an ensemble of wavelengths we can choose a

principle ray wavelength λ that will propagate downstream
with no wavefront tilt. Other wavelengths will propagate

from the grating at a certain angles from the principle ray,

determined by a grating angular dispersion, e.g. λ0 + Δλ
will be tilted by:

Δθ =
ΔλD0

θd
, (6)

where θd = arccos(cos θi − λD0).
In this case a linear phase tilt should be applied with

respect to the principal ray frequency ω0:

ΔΦ(x, y,ω0,Δω) = −2πxΔθ
λ0

=
2πxΔωD0

ω0θd
. (7)

Finally, cumulative effect of the grating modeling may be

written as

�̄E(ω, x, y) = �̄E0(ω, x, y) exp [iΔΦ] ,

ΔΦ = k
(
− ftang x

2− fsag y
2

2
+

C′
30
x3

θ3
d

+
C12xy

2

θd
+

2πxΔωD0

kωθd

)
. (8)

Focusing with Mirrors
In SXRSS setup another optical element, where tangential

curvature is present is M2 mirror. In this case simulation is

similar to the grating, but D0, D1 and D2 VLS coefficients

are equal to zero, θi = θd , and no field resizing should be
applied.

Mirror Surface Height Errors Simulation
A very important issue is to keep track of the radiation

quality degradation caused by reflections from optical el-

ements with imperfect surfaces. Phase-shifter model was

used to simulate this effect, [23] (see Fig. 3). The height error

δh on an optical surface will perturb the radiation wavefront
with a phase shift ΔΦ in the following way:

ΔΦ =
4πδh
λ

sin θ , (9)

where θ is the radiation’s angle of incidence with respect to
the surface. In the case of a grating, the phase shift can be

expressed in terms of incidence and diffraction angles:

ΔΦ = 2π(sin θi + sin θd )
δh
λ
. (10)

SIMULATION DETAILS AND
APPROACHES

SASE FEL distribution at the end of the last section of

SASE undulator is obtained with the GENESIS software. It

is dumped in a space-time domain. We apply a temporal

Fourier transform, and once obtained the radiation distribu-

tion in a space-frequency domain, transverse distributions

for an every calculated discrete frequency are treated sepa-

rately. We apply a Fresnel propagator from Eq. (1) with z
equal to a distance between the end of the undulator and the

hit point at the grating. The phase shifter, described in Eq.

(8) is used to simulate focusing of the beam by the toroidal

VLS grating. Tilt is introduced accordingly to a difference

Δω between the frequency being currently propagated and
the frequency that is chosen to be a principle ray of dispersed

radiation (Eq. 7). After the grating, beam is propagated to

M1 position, then to M2 mirror with multiplication by it’s

focusing phase shifter, then to M3 following with the final

propagation to the entrance of the seeded undulator. At the

every reflecting optical element a height error phase shifter

(Eq. 10) with a certain height error profile is applied. This

propagation is applied for an every frequency, therefore we

may obtain a space-time domain of the dispersed radiation

(Fig. 4) with an inverse temporal Fourier transform and

use it as a seed in a GENESIS simulations of the seeded

undulator. We call this approach the “direct” one.

On the other hand, one may characterize the monochroma-

tor performance by calculation of it’s instrumental function

(Fig. 5). It can be achieved by propagation of a certain

typical transverse distribution with a different tilts that corre-

spond to a different wavelengths (Eq. 7). At the entrance to

the seeded undulator these distributions will have a varying

transverse offset and after amplification simulation in linear

mode one will obtain an amplified power as a function of a

wavelength. If that power is normalized by the input coupling

factor at 1-to-1 imaging from the end of the SASE undulator

to the entrance to the seeded undulator it can be interpreted

as an instrumental function of the monochromator at a given

set-up (wavelength, FEL gain length, etc.) It allows one to

avoid propagation of every pulse by only multiplying radia-

tion distribution in space-frequency domain at the end of the

SASE undulator by the instrumental function of monochro-

mator. This way one obtains the radiation distribution at
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Figure 4: An example of dispersive projection of the radia-

tion distribution in a space-time domain for the FEL pulse

before the monochromator (left) and the dispersed radiation

distribution after the monochromator (right). Here “x” is

a dispersive dimension, and “z” is a dimension along the

pulse propagation direction.
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Figure 5: An example of monochromator instrumental func-

tions for a different photon energies. Physical slit is not

inserted. An inverse full width at half maximum can be

interpreted as an effective resolving power of the monochro-

mator.

the entrance to the seeded undulator. We call this approach

the “phenomenological” one. The phase of the instrumental

function is obtained with Kramers-Kronig relations (this ap-

proach was also used for Hard X-Ray Self Seeding (HXRSS)

setup simulation in e.g. [8], [9]). In this case the transverse

distribution of the radiation doesn’t change after passing

the undulator, which does not correspond to reality, but this

distribution is amplified in seeded undulator the same way

as one obtained with “direct” approach (Fig. 6) yielding the

same radiation properties after amplification (Fig. 7).

CONCLUSIONS
This article describes a way to numerically simulate a

propagation of the radiation through the optical system of

the Soft X-ray Self Seeding Monochromator. The propa-

gated field is used as a seed for a GENESIS simulations

downstream the monochromator allowing one to investi-

gate the FEL beamline performance after the monochro-

mator installation. The monochromator’s optical elements

are represented as a transverse phase shifters, allowing to
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Figure 6: Power of the radiation in the seeded undulator. The

radiation was propagated through the seeded undulator with

the direct (solid line) and the phenomenological (dashed

line) approaches. Pulse energy is 1000 eV.
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Figure 7: Spectra of the radiation at the seeded undulator

entrance (left figure) and exit (right figure). The radiation

was propagated through the seeded undulator with the di-

rect (solid line) and the phenomenological (dashed line)

approaches. Pulse energy is 1000 eV.

modify the radiation wavefront accordingly to curvatures,

positions and height errors of mirrors and aberrations intro-

duced by them. Propagation of the radiation between optical

elements is done with Fresnel propagator. The monochro-

mator radiation transport simulation allows one to study the

monochromator performance in the beamline, such as effec-

tive resolving power of the monochromator without the exit

slit, the input coupling factor, or effectiveness of a tapering.

Two approaches described above allow one to fill the gap

in numerical simulations of FEL performance with SXRSS

monochromator.

Based on simulations, we found that resolving power of

the LCLS SXRSS monochromator operating without the

exit slit varies from 5400 to 8500, that is close to resolving

power with 3μm exit slit inserted [13]. Resolving power

along with input coupling factor are affected by the choice

of source position in the SASE undulator. Surface height

errors of installed optics have shown no significant effect on

the monochromator performance. More detailed study is to

be published [24].
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