Radiation Properties of Tapered X-Ray Free Electron Lasers

C. Emma, J. Wu, K. Fang, S. Chen, S. Serkez and C. Pellegrini

FEL Conference 2014

August 25th, Basel, Switzerland

Presentation Outline

Motivation

Why tapering for hard X-ray FELs?

What are the requirements on the radiation from high power X-FELs?

Why do we need to study the radiation properties of tapered hard X-ray FELs?

Tapered X-FELs: Physical Examples and Radiation Properties

Conclusion & Future Work

Pushing the imaging frontier

Redecke et al., Science 339, 6116, (2012)

2.1 A resolution *Trypanosoma brucei* cysteine protease cathepsine B

> Single Molecule Imaging Goal 20 fs - 20 mJ - 2020

Angstrom scale X-ray diffraction experiments have been performed successfully at LCLS

Resolution improves with higher photon energy & shorter pulse duration reduces radiation damage

Achieving ~ 20 fs pulses with 2 x 10¹³ photons/pulse allows single molecule imaging

Need TW X-FELs

Can we get to TW power and achieve the right coherence/ spectral properties for imaging?

Incoherent Scattering gives statistical average of electron density in sample

> Coherent Scattering gives exact measurement (after phase retrieval) of electron density

V. D. Veen, J.F. Pfeiffer, J. Phys. Condens. Matt. 16 5003-5030, (2004)

Goal:

Characterize the radiation from tapered hard X-ray FELs and determine its applicability in future coherent X-ray diffraction imaging experiments

Presentation Outline

Motivation

Radiation Properties

What is the physical system we studied? How are the optimal taper profiles obtained?

How does the radiation profile evolve in the tapered X-FELs?

What are the coherence properties and mode structure of the radiation?

Conclusion & Future Work

Self-Seeding + Tapering =TW + Longitudinal Coherence

Taper profile $a_w(z) = a_w(z_0)(1 - c \times (z - z_0)^d)$

Optimization performed over z₀, c, d using GENESIS for maximum output power

Parameter Name	NCU Value
Beam Energy E_0	13.4 GeV
Beam Peak Current I_{pk}	4000 A
Bunch Length t_b	16.4 fs
Normalized Emittances $\epsilon_{x,n}/\epsilon_{y,n}$	$0.3/0.3~\mu$ m
Undulator Period λ_w	32 mm
Undulator Parameter K	3.2
Radiation Wavelength λ_r	$1.5 \ Å$
Peak radiation power input P_{in}	5 MW
FEL parameter ρ	7.361×10^{-4}

Y. Jiao, et al, Phys. Rev. ST Accel. Beams, vol. 15, p. 050704, May 2012

Optimized Tapering Simulations: Transverse Effects Detrapping -> Reduced Guiding -> Increased Diffraction z = 50mz = 120m z = 180m δγ/γ [10⁻³] 5y/y [10⁻³ δγ/γ [10⁻³ ·20 -10-0.50.0 -1.00.51.0-1.0-0.5 0.01.0-0.5 0.51.0 0.0 θ/π θ/π θ/π $n = 1 + \frac{\omega_{p,0}^2}{\omega_s^2} \frac{r_{b,0}^2}{r_{\scriptscriptstyle L}^2} \frac{a_w}{2|a_s|} [JJ] \left\langle \frac{e^{-\imath\Psi}}{\gamma} \right\rangle$ 0.7 2.00.6 Bunching Factor 0.5 1.5 P [TW] 0.4 1.0 0.3 D. Prosnitz, A. Szoke, V.K. Neil, Phys. Rev. A., vol. 24, p. 1436, 1981 0.2 1.0 0.5 0.1 0.8 0.0 0.0100 150 100 50 200 50 150 200 0 0 z [m] z [m] 0.6 $F_t(z)$ 0.4 Electric Field [TV/m] 0.25 80 0.20 0.2 $\sigma_{rr} \ [\mu m]$ 60 0.15 0.0^{\lfloor} 50 200 100 150 0.10 40 z [m] 0.05 20Transverse electron distribution 0.00 150 200 50 100 150 200 100 50 0 z [m] z [m] Gaussian Parabolic Uniform

Longitudinal Effects Spectral Profile and Sideband instability

Gaussian Parabolic Uniform

Coherence area >> Radiation spot size $A_{coh} = \int \mu_{12} dA >> \pi \sigma_r^2$

What is the mode structure of tapered X-FELs?

Higher order mode structure in radiation field

Electric Field expansion in complete set of Laguerre-Gaussian Modes

$$E(r) = \sum_{n=0}^{\infty} a_n e^{-\zeta r^2/2} L_n \left(R(\zeta) r^2 \right)$$

$$a_n = \int_0^\infty E(r) L_n(\Re[\zeta]r^2) e^{-\zeta^* r^2/2} \mathrm{d}(L_n(\Re[\zeta]r^2))$$

Structures washed out by diffraction and FEL interaction post-saturation

Superconducting Undulator

Presentation Outline

Motivation

Radiation Properties

Conclusion & Future Work

What have we learned from this study?

Conclusions & Future Work

- X-ray FELs in the TW power region are required to push the frontiers of bio-imaging
- Tapering + Self-seeding is a promising strategy for achieving TW power levels with good longitudinal coherence
- The radiation properties and transverse coherence of tapered X-FELs has been analysed and we determined it sufficient for coherent X-ray diffraction applications
- Start to end simulations of optimised tapered X-FELs at TW power levels
- Analytical studies of particle detrapping and its relation to taper strength in TW tapered X-FELs

The authors would like to thank Dr. S. Reiche for useful advice and reference to past work on the subject of transverse coherence in an X-FEL

References

- 1. Redecke et al., Science 339, 6116, (2012)
- 2. J. Wu, Workshop on advanced X-ray FEL development, DESY May 2014
- 3. V.D. Veen J.F. Pfeiffer, J. Phys. Condens. Matt. 16 5003-5050, (2004)
- 4. Y. Jiao et al., Phys. Rev. ST Accel. Beams, vol 15. p. 050704, May 2012
- 5. D. Prosnitz, A. Szoke, V.K. Neil, Phys. Rev. A., vol. 24, p. 1436, 1981
- 6. W. Fawley et al., FEL 2011 Conference Proceedings, Shanghai pp. 160-163, 2011
- 7. S. Reiche, "Transverse Coherence Properties of the LCLS X-ray Beam", LCLS-TN-06-13, October 31 2006
- 8. S. Reiche and B. Pedrini, Coherence Properties of Swissfel, PSI
- 9. J. W. Goodman, Statistical Optics, New York, USA: John Wiley and Sons Inc., 1985

Longitudinal Effects Spectral Profile and Sideband instability

$$\frac{P_{sideband,max}}{P_{peak}} \sim 0.3\% - 1\%$$

Sideband Intensity reduced for flatter transverse electron distribution

 $\int_{sidebands} P(\lambda) d\lambda = \begin{cases} 1 & \text{Gaussian} \\ 0.4 & \text{Parabolic} \\ 0.3 & \text{Uniform} \end{cases}$

Gaussian Parabolic Uniform

Mode Decomposition Calculations

Output E field from GENESIS and compute coefficients for different ζ

Choose ζ such that fundamental mode dominates FEL interaction i.e. minimises κ

$$\kappa = \sum_{n=1}^{\infty} |a_n| / |a_0|$$

~~

$$a_n = \sum_{m_1} \sum_{m_2} \tilde{E} \left(\Delta x m_1, \Delta y m_2 \right) \exp\left(\frac{-\zeta}{2} r^2\right)$$
$$L_n \left(R(\zeta) r^2 \right) R(\zeta) \Delta x \Delta y,$$

Fig. 2. κ varies with $R(\zeta)$