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Abstract

For the ultimate use for the scientific experiments, the
free electron laser (FEL) will propagate for long distance,
much longer than the Rayleigh range, after exiting the undu-
lator. To characterize the FEL for this purpose, we study the
electromagnetic field mode components of the FEL photon
beam. With the mode decomposition, the transverse coher-
ence can be analyzed all along. The FEL here in this paper
is a highly tapered one evolving through the exponential
growth and then the post-saturation taper. Modes contents
are analyzed for electron bunch with three different types
of transverse distribution: flattop, Gaussian, and parabolic.
The tapered FEL simulation is performed with Genesis code.
The FEL photon beam transverse electric field is decom-
posed with Gaussian-Laguerre polynomials. The evolutions
of spot size, source location, and the portion of the power
in the fundamental mode are discussed here. The approach
can be applicable to various kind scheme of FEL.

INTRODUCTION

Free electron Laser (FEL) is one of the most powerful
tools for frontier scientific research. Many experiments,
especially for bioimaging [1, 2], will benefit greatly from
the enhanced coherent light peak power at Terawatt (TW)
level. To improve the efficiency of an FEL, in recent years,
the tapered undulator scheme has gotten renewed attentions
[3–5]. More recently, to further improve the taper efficiency,
various transverse distributions of the electron bunch are
investigated. In this paper, we study this topic by looking
into the mode contents of the FEL in the exponential growth
regime as well as in the post-saturation tapered regime.

As initiated in Ref. [5], the transverse effect is also an im-
portant aspect to be studied for boosting the FEL power into
TW level. In this paper, three different types of transverse
distributions of the electron beam, the flattop, Gaussian, and
parabolic distributions, are analyzed. Different transverse
distributions can excite different kinds of high-order modes,
which can in principle help trapping the electrons as the FEL
interaction develops along the undulator field. Therefore,
the FEL power can be further increased. With the mode
contents analyzed, the transverse coherence can be studied
naturally. The mode decomposition, which is to decompose
a field to a set of complete orthonormal modes, is widely
used on laser like high directional sources [6].

To compare with the decomposition method, a simple
analytical extended “line source” model is developed. The

decomposition result and the evolution of the spot size, the
source location and the power ratio of fundamental mode to
the total power are presented.

LAGUERRE-GAUSSIAN EXPANSION

A complex E-field with the form of Ẽ(x, y) can be ex-
panded in a complete orthnormal basis. Here the Laguerre-
Gaussian polynomials are chosen as the basis for expansion:

E(r) =

∞
∑

n=0

ane−ζr
2/2Ln

(

R(ζ )r2
)

, (1)

where we assume that the modes have azimuthal symmetry
r =

√

x2 + y2 with R(ζ ) being the real part of ζ which char-
acterizes the mode size and also the wave-front curvature.
With the orthogonality condition, the coefficients an can
be calculated, and the square of an fives the power of each
mode.

We get the electric field as a numerical solution from
GENESIS [7] simulation. The electric field output is a two-
dimensional matrix with complex values, which is in the
form of Ẽ (∆xm1,∆ym2), where m1 and m2 are integers.
The an should be integrated by discretized form of

an =

∑

m1

∑

m2

Ẽ (∆xm1,∆ym2) exp

(

−ζ

2
r2

)

∗Ln

(

R(ζ )r2
)

R(ζ )∆x∆y, (2)

where r2should be substituted by (∆xm1) 2 + (∆ym2) 2.
We have carefully chosen the grid size and simulation

area such that the orthogonality between different Laguerre-
Gaussian modes is well preserved. The grid size is small
enough to represent the structure in Laguerre-Gaussian
modes, while the simulation area is large enough so that
the cutoff error is negligible.

Based on the above formalism, an electric field can be
decomposed numerically by the mode series of a Laguerre-
Gaussian polynomial. However, the set of mode series are
not determined until the value ζ is fixed. Although concep-
tually the basis is complete for an arbitrary complex value
of ζ , physics consideration has to be applied to find ζ . The
details of our approach is given in next section.
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DECOMPOSITION METHOD

The electric field expression in Eq. (1) is analogous to
a standard Gaussian laser beam. For n = 0 in Eq. (1), at a
certain z, we can have the relations:

R(ζ ) =
2

w2(z)
, (3)

and

I(ζ ) =
k

R(z)
, (4)

where I(ζ ) is the imaginary part of ζ .R(z) and w(z) stands
for the wave-front curvature and the spot size, respectively.
The above relations clearly expresses the physical and math-
ematical meaning of ζ , and the relations help us develop a
brief approach of finding the value ζ .

Let’s discuss the imaginary part of ζ first. For free space
propagation of a divergent field Ẽ (∆xm1,∆ym2) at z, the
rms spot size (σr ) increases as in the +z-direction; and σr
decreases as in the −z-direction (and vice versa for a con-
vergent photon beam). One special case is that σr increases
in both propagation directions (±z-directions), when the
wave-front curvature is infinity. In other words, writing the
electric field in the following form:

Ẽ (∆xm1,∆ym2) = Ẽ0e−ia exp
[

−ibr2
− cr2

]

, (5)

such a special case happens at b = 0. Normally, b =

I(ζ ) , 0 for an arbitrary z. However, by multiplying a
term, exp

[

ib′r2
]

to Eq. (5), the propagation property will

be changed. If b′ = b , exp
[

ib′r2
]

× Ẽ (∆xm1,∆ym2) has
the property of the special case, i.e., σr increases in both
the +z and the −z directions, then we have b′ right equal to
I(ζ ). This is how we find I(ζ ).

Now, let’s discuss the real part of ζ . In Ref. [8], a
Variational-Solution-Based (VSB) expansion method was
adopted to solve the dispersion relation of an FEL system
with a trial function in Gaussian form. The solution of the
dispersion relation tells us that the fundamental eigenmode
[n = 0 in Eq. (1)] has the largest growth rate and eventually
the fundamental eigenmode dominates the electric field. So
a simple rule could be adopted for choosing R(ζ ), i.e., the
chosen ζ = R(ζ ) + iI(ζ ) should maximize the portion of
the fundamental mode, while the I(ζ ) should be fixed by
the propagation approach described above.

Before we explain the details of the mode content, let us
give the parameters of the simulation as in Tab. 1. For the
particular example in this paper, we are simulating a seeded
FEL in a highly tapered undulator and reaches TW level as
shown in Fig. 1 for three different electron transverse distri-
butions: Flattop, Gaussian, and Parabolic. Within about 180
meter long undulator, the FEL power can reach TW level
for all the three different distributions, with the flattop distri-
bution supporting the highest power. The seed is a Gaussian
fundamental mode with 5 MW peak power.

Here is a brief description of the approach:
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Figure 1: FEL power along the undulator for three different
distributions: Flattop, Gaussian, and Parabolic.

Table 1: The Parameters Used in The Simulation in This
Paper

Symbol Value Unit

Charge Q 150 pC

Centroid energy E0 13.64 GeV

Peak current I pk 4 kA

Temporal distribution flattop -

Slice normalized emittance εn 0.3 mm-mrad

Slice energy spread σδ 9.5 10−5

Undulator period λw 3.2 cm

Length of undulator Lw 180 m

FEL wavelength λr 1.5 Å

FEL seed power Pseed 5 MW

Power gain length LG 2.7 m

1. Get I(ζ ) by studying the wave front curvature property
via free space propagation.

2. Get R(ζ ) by maximizing the portion of fundamental
mode.

The summation of modes from decomposition calculation is
then compared with the electric field from GENESIS output.
Results for three typical values of z, namely: in the expo-
nential growth region (z = 20 m), at the exponential growth
saturation point (z = 30 m), and post exponential growth
saturation region (z = 150 m), are presented in Fig. 2. The
results show that the approach works well. Even though the
curve inside the central parabolic region of the phase plot
(right column in Fig. 2) deviates from a parabolic curve, it
still gives a very nice match, which gives a strong proof that
an calculated by Eq. (2) gives correct amplitude and phase
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Figure 2: The absolute value and the phase of the
E(r) =

∑19
n=0 aneζn (from decomposition calculation) and

Ẽ (∆xm1,∆ym2) (from the GENESIS simulation) are plot-
ted. Three cases with z = 20,30, and 150 m represent the
exponential growth region, the saturation point, and the post
saturation region, respectively.

of the modes. According to the results, the electric field data
can be well reconstructed with about twenty modes. The
discrepancy of the phase in the large r-region is due to the
numerical reflection field from the boundary in GENESIS
simulation. Furthermore, there is very little FEL power in
this large r-region. The evolution of the spot size and the
source location is discussed after next section.

THEORETICAL MODEL: A LINE

SOURCE

In the post-saturation region after the exponential growth,
the FEL photon can be modeled as an extended line source.
The light emitted from a long undulator in the post-saturation
region is analogous to an extended line source containing
infinite points from which a laser beam is emitted at its
waist position. The line source points are weighted by the
following function,

pα,β (zs , zsat) = 1 + α (zs − zsat)
β , (6)

where zs is the source location, and zsat is the exponential
growth saturation point. The weighting function in Eq. (6)
as a physics consideration is to describe the fact that the local
emitted power is varying along the undulator. For β = 0,

Eq. (6) describes a scenario that the local emitted power is
the same along the undulator, so that the total power will be
increasing linearly along the undulator. While for β = 1, Eq.
(6) then describes that the local emitted power is increasing
linearly along the undulator, so that the total power will be
increasing quadratically along the undulator.

For the case that the observation point z is outside of the
undulator, i.e. z > Lu , an integration from the exponential
growth saturation point zsat to the undulator exit Lu then
describes how the spot size evolves in such a line source
model,

w
2 (z,Lu ) =

∫ Lu

zsat
w

2
0

[

1 +
(

z−zs
zR

)2
]

pα,β (zs , zsat) dzs

∫ Lu

zsat
pα,β (zs , zsat) dzs

,

(7)
where the subscript in zs means “source” which can be
anywhere from the exponential growth saturation point, zsat ,
to the end of undulator at Lu ; zR = πw

2
0/λr is the Rayleigh

range and w0 is the beam waist size.
Normally, the second term in the weighting function as in

Eq. (6) is much larger than the first term: “1”, so the first
term is dropped in the following calculation for simplicity
even though the integral in Eq. (7) can still lead to a closed
form with the first term: “1”. With the first term dropped,
the parameter α is canceled out, so the integral in Eq. (7)
becomes:

w
2
β (z,Lu ) =

w
2
0

z2
R

(1 + β)Γ(1 + β)

Γ(4 + β)
×

[

(1 + β)(3 + β) (z − Lu )2 + (3 + β) (z − zsat)
2

−(1 + β) (Lu − zsat)
2 + (2 + β)(3 + β)z2

R

]

. (8)

For β = 0 and β = 1, the expressions are:

w
2
β=0 (z,Lu ) = w

2
0 [1+

(z − Lu )2

2z2
R

+
(z − zsat)

2

2z2
R

−

(Lu − zsat)
2

6z2
R







, (9)

and

w
2
β=1 (z,Lu ) = w

2
0 [1+

2 (z − Lu )2

3z2
R

+
(z − zsat)

2

3z2
R

−

(Lu − zsat)
2

6z2
R







. (10)

Notice that the spot size is a function of both the obser-
vation point (z) and the undulator length (Lu). If on the
other hand, the observation point is inside the undulator, i.e.,
z < Lu , we can simply replace Lu by z in Eqs. (9) and (10),
then the first term vanishes. The expression of β = 1 is used
as the expected value for the “line source” curve in Fig. 3.
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Based on the line source model, we can compute the
effective source location:

wline
2 (z,Lu ) = w0

2
[

1 +

(

z − zeff

zR

)

2
]

, (11)

where wline
2 (z,Lu ) is given in Eq. (7). The effective source

location can be obtained by solving the above equation,
zeff (z) = z − zR

√

wline
2 (z,Lu ) /w0

2
− 1.

For β = 0 and β = 1, the expression for zeff can be
simplified by proper approximations to get:

zeff;β=0(z) ≈
(Lu + zsat)

2
−

(Lu − zsat)
2

24z

−

(Lu − zsat)
2 (Lu + zsat)

48z2
, (12)

and

zeff;β=1(z) ≈
(2Lu + zsat)

3
−

(Lu − zsat)
2

36z

−

(Lu − zsat)
2 (2Lu + zsat)

108z2
. (13)

The above described model and expressions (for β = 1)
will be compared to the numerical results below.

DECOMPOSING RESULT AND OPTIC

PROPERTIES

A tapered undulator scheme is studied to achieve TW
power level. Three different types of electron transverse dis-
tributions are considered in the study. The electric fields at
several different observation points along the undulator are
simulated with GENESIS. The electric fields are decomposed
by the approach introduced in third section. The decompo-
sition is applied to all three cases with different kind of
transverse electron distributions. As shown in Fig. 1, for
the Gaussian case, the tapered FEL saturates at about 150
m, hence in the following, we should results up to 150 m.
The evolution of the portion of power in the fundamental
mode can be clearly obtained after the mode decomposition.
Before reporting the results, some related optic properties
and FEL characteristics are discussed as in the follows.

The spot size can be calculated by Eq. (3), and the evolu-
tion of spot size is shown in Fig. 3. The simulation results
are compared to the expected value (“line source”) which is
introduced above in above section. The expected spot size
values of the FEL light are modeled by two physical consid-
erations: one is the gain guiding effect in the exponential
growth region, which gives a result that the spot size does
not change before the exponential saturation point as the
FEL develops along undulator; the other one is that the light
emitted from the post saturation region is described by the
extended line source model above.

The spot size from the decomposition calculation shows
the gain guiding characteristic in all three cases of transverse
distributions. The gain guiding effect is fully established at

around 20m as in Fig.3. Before 20m, there are modes not sat-
isfying the azimuthal symmetry. Besides, the fundamental
mode is not dominating yet before 20m.
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Figure 3: FEL beam spot size varies along the undulator
distance.
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Figure 4: FEL source location varies along the undulator
distance.
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Figure 5: The portion of the fundamental mode power varies
along the undulator distance.

The effective beam waist locations, also called the source
locations, of all three cases are plotted in Fig. 4 and the
expected value is shown together. The expected value is
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defined by two rules. First, in the exponential growth region,
the source location is at about one gain length before the
observation point. For example: the electric field at 30m
has a source location at 27.3m since the gain length here is
2.7m. Second, the extended “line source” model with β = 1
is adopted to get the effective source location.

For the numerical part, analogy to a laser beam, the FEL
effective beam waist location zs can be evaluated by the
wave front curvature R(z) and the spot size w(z) at certain
location z. Since we expand the electric field in the Laguerre-
Gaussian basis as in Eq. (1), we can write the R(z) and w(z)

with R(ζ ) and I(ζ ):

zs =
R(z)

1 +
[

λR(z)

πw (z)2

]2
=

2π
λ

I(ζ )

I2(ζ ) + R2(ζ )
(14)

The results show that in the exponential growth region,
the source location is very close to one gain length before
the observation point, just as expected. In the post saturation
region, the source location is very close to the expected
values as in Fig. 4.

The discussion on the spot size and source location evolu-
tion reveals some expected FEL properties, which supports
that the approach of mode decomposition is reliable. Next,
we show how the power of the fundamental mode evolves
along the undulator as in Fig. 5. In the plot, in the expo-
nential growth region, the portion of the fundamental mode
grows very fast and exceeds 95% at saturation point. In
the post saturation region, after 80m, the ratio drops down
slightly. However, it is still higher than 90%. This is a very
important result. This means that when the TW FEL is
achieved by utilizing taper undulator associated with various
types of beam transverse distributions, the power portion in
the fundamental mode remains high. This ensures that such
an FEL light has high transverse coherence.

SUMMARY

The taper undulator scheme with three kinds of transverse
electric beam distributions is investigated for a TW FEL.
The transverse coherence property is discussed by mode de-
composition. An approach of finding the mode contents of
a complex electric field generated from GENESIS simulation
is proposed and proven to be reliable. It is discovered that
in the post saturation region, over 90% of the total power
belongs to the fundamental mode. For the three different
transverse distributions, the percentage of the fundamental
mode power is higher in the flattop and parabolic cases than
in the Gaussian case. The high percentage of the funda-
mental mode guarantees a high transverse coherence. With

the knowledge of the mode contents, the source location is
also calculated, which provides information for downstream
x-ray beam line design.
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