Author: Wang, N.
Paper Title Page
TUPMF052 Progress of Lattice Design and Physics Studies on the High Energy Photon Source 1375
 
  • G. Xu, X. Cui, Z. Duan, Z. Duan, Y.Y. Guo, D. Ji, Y. Jiao, J.L. Li, X.Y. Li, C. Meng, Y.M. Peng, Q. Qin, S.K. Tian, J.Q. Wang, N. Wang, Y. Wei, H.S. Xu, F. Yan, C.H. Yu, Y.L. Zhao
    IHEP, Beijing, People's Republic of China
 
  The High Energy Photon Source (HEPS) is an ultralow-emittance, kilometer-scale storage ring light source to be built in China. In this paper we will introduce the progress of the physical design and studies on HEPS over the past one year, covering issues of storage lattice design and optimization, booster design, injection design, collective effects, error study, insertion device effects, beam lifetime, etc.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPMF052  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMF053 Longitudinal Impedance Measurement of the Strip-Line Kicker for High Energy Photon Source (HEPS) 1379
 
  • S.K. Tian, J. Chen, Y. Jiao, H. Shi, L. Wang, N. Wang
    IHEP, Beijing, People's Republic of China
 
  The High Energy Photon Source (HEPS) is a 6-GeV, kilometer-scale storage ring light source to be built in China. One of the main design challenges of the storage ring is to minimize collective instabilities associated with the impedance of small-aperture vacuum components. In this paper we present beam coupling impedance measurements obtained by the well known coaxial wire method, for the HEPS Strip-Line kicker. The frequency dependent real and imaginary parts of the distributed impedance are obtained from the measured S-parameters.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPMF053  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPML069 Fast Kicker and Pulser R&D for the HEPS on-Axis Injection System 2846
 
  • H. Shi, J. Chen, Z. Duan, L. Huo, P. Liu, X.L. Shi, G. Wang, L. Wang, N. Wang
    IHEP, Beijing, People's Republic of China
 
  The HEPS plans to adopt on-axis injection scheme because the dynamic aperture of machine is not large enough for off-axis injection for its baseline 7BA lattice design. A sets of super fast kicker and pulser of ±15kV amplitude, 15ns pulse bottom width are needed for bunch spacing of 10ns to minimize perturbation on adjacent bunches. To achieve these requirement, a multifaceted R&D program including the strip-line kicker and HV pulser, was initiated last 2 years. So far, the prototype development of a 750mm long strip-line kicker and a DSRD pulser was completed and the preliminary test results show they can meet the baseline requirement of the HEPS.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPML069  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPML071 Superconducting 16-Pole Wiggler for Beijing Electron-Positron Collider II 2853
 
  • M.X. Li, X.J. Bian, F.S. Chen, W. Chen, X.J. Sun, H. Wang, J.L. Wang, N. Wang, M.F. Xu, X.C. Yang
    IHEP, Beijing, People's Republic of China
 
  A superconducting 16-pole 2.6T wiggler with period 170mm of The High-Energy Photon Source and the Test Facility Project (HEPS-TF) designed and fabricating in the Institute of High Energy Physics (IHEP) in China is described. This wiggler will be installed in Beijing Electron-Positron Collider II (BEPCII). The main parameters and structure of the wiggler are presented. Besides, some vertical testing results are involved.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPML071  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAF012 The Influence of Chromaticity on Transverse Single-Bunch Instability in the Booster of HEPS 2968
 
  • H.S. Xu, N. Wang
    IHEP, Beijing, People's Republic of China
 
  The study of the transverse single-bunch instability has been carried out for the HEPS booster to double check whether the required single-bunch charge can be achieved. The chromaticity has been varied in our study to see how the threshold changes accordingly. Usually, the slightly positive chromaticity is expected for stabilizing the beam. However, our simulations show that the single-bunch threshold current drops significantly when the chromaticity becomes non-zero. We present the simulation methods and results in details in this paper. The analysis of the simulation results is also presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPAF012  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAF014 Studies of the Single-Bunch Instabilities in the Booster of HEPS 2971
 
  • H.S. Xu, Z. Duan, J.L. Li, Y.M. Peng, S.K. Tian, N. Wang
    IHEP, Beijing, People's Republic of China
 
  High Energy Photon Source (HEPS), which is proposed in China, is an ultra-low emittance storage ring based synchrotron light source. Because of the requirement of the relatively high single-bunch charge, the booster may suffer from the single-bunch instabilities. A preliminary impedance model has been developed for the studies of collective instabilities in the booster. Based on this impedance model, the longitudinal and transverse single-bunch instabilities have been studied.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPAF014  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAK014 Analytical Estimation of the Beam Ion Instability in HEPS 3231
 
  • N. Wang, Z. Duan, S.K. Tian, H.S. Xu
    IHEP, Beijing, People's Republic of China
 
  The High Energy Photon Source (HEPS) is a new designed photon source at beam energy of 6 GeV, with natural beam emittance less than 100pm. Due to the small transverse beam size, beam ion instability is one of the potential issues for HEPS. The growth time of the instability is estimated analytically for different operation scenarios. The results show considerably good agreement with the wake strong simulations.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPAK014  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAK015 Impedance and Heat Load Analysis of the Stripline Kicker in HEPS 3234
 
  • N. Wang, J. Chen, Z. Duan, H. Shi, S.K. Tian, L. Wang, H.S. Xu
    IHEP, Beijing, People's Republic of China
 
  In the High Energy Photon Source (HEPS), strip-line kickers are adopted for beam injection and extraction. Beam coupling impedance contribution from the strip-line kicker is calculated. Detailed studies on the heat load dissipation have been performed. The peak electric field on the blade and the induced voltage on the feedthroughs due to the beam passage are also calculated.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPAK015  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAK016 Measurement and Analysis of Synchrotron Tune Variation with Beam Current in BEPCII 3237
 
  • N. Wang, Z. Duan, G. Xu, H.S. Xu, C.H. Yu, Y. Zhang
    IHEP, Beijing, People's Republic of China
 
  Coherent synchrotron frequency shift is observed during machine studies in BEPCII (Beijing Electron Positron Collider Upgrade). The results show that the synchrotron frequency varies parabolically with the increase of the beam current. This phenomenon is supposed to be induced by the interaction of the beam with the fundamental mode of the accelerating cavity. In order to explain this phenomenon, a simple physical model is developed from the couple bunch instability theory. The analytical estimations based on the physical model show good agreement with the measurements.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPAK016  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMF052 The Swap-Out Injection Scheme for the High Energy Photon Source 4178
 
  • Z. Duan, J. Chen, Y.Y. Guo, Y. Jiao, J.L. Li, Y.M. Peng, J.Q. Wang, N. Wang, G. Xu, H.S. Xu
    IHEP, Beijing, People's Republic of China
 
  Funding: Work supported by Natural Science Foundation of China (No.11605212).
The on-axis swap-out scheme is a promising injection scheme for di raction-limited storage rings, since it only re- quires a rather small dynamic aperture and thus potentially allows a higher brightness compared to traditional o -axis injection schemes. However, a full charge injector is neces- sary for this scheme and its design can be nontrivial, in par- ticular to satisfy the large single bunch charge requirements in special lling patterns for timing experiments. In the High Energy Photon Source, we propose using the booster also as a high energy accumulator ring to recapture the spent bunches extracted from the storage ring, so as to relax the challenges in generation and acceleration of bunches with a high charge, and as a cost-e ective solution compared to building a dedicated full energy accumulator ring. In this paper, the beam dynamics issues of this scheme will be presented, trade-o s between the storage ring and booster beam parameters and hardware specifications will also be discussed.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMF052  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMF055 Ion Instability Simulation in the HEPS Storage Ring 4189
 
  • S.K. Tian, Y. Jiao, N. Wang
    IHEP, Beijing, People's Republic of China
  • K. Ohmi
    KEK, Ibaraki, Japan
 
  The High Energy Photon Source (HEPS), a kilometre scale storage ring light source, with a beam energy of 6 GeV and transverse emittances of a few tens of pm.rad, is to be built in Beijing and now is under design. We investigate the ion instability in the storage ring with high beam intensity and low-emittance. We performe a weak-strong simulation to show characteristic phenomena of the instability in the storage ring.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMF055  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)