Author: Baraissov, Z.
Paper Title Page
TUPFDV010 New Recipes to Optimize the Niobium Oxide Surface From First-Principles Calculations 426
 
  • N. Sitaraman, T. Arias, Z. Baraissov, M.M. Kelley, D.A. Muller
    Cornell University, Ithaca, New York, USA
  • M. Liepe, R.D. Porter, Z. Sun
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  Funding: This work was supported by the U.S. National Science Foundation under Award No. PHY-1549132, the Center for Bright Beams
The properties of niobium oxide are of critical importance for a wide range of topics, from the behavior of nitrogen during infusion treatments, to the nucleation of Nb3Sn, to the superconducting properties of the surface. However, the modeling of the oxide is often much simplified, ignoring the variety of niobium oxide phases and the extremely different properties of these phases in the presence of impurities and defects. We use density functional theory (DFT) to investigate how electrochemical treatments and gas infusion procedures change the properties of niobium oxide, and to investigate how these properties could be optimized for Nb3Sn nucleation and for niobium SRF performance.
 
DOI • reference for this paper ※ doi:10.18429/JACoW-SRF2021-TUPFDV010  
About • Received ※ 01 July 2021 — Accepted ※ 18 November 2021 — Issue date ※ 22 February 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEOTEV03 Toward Stoichiometric and Low-Surface-Roughness Nb3Sn Thin Films via Direct Electrochemical Deposition 710
 
  • Z. Sun, G. Gaitan, M. Ge, K. Howard, M. Liepe, T.E. Oseroff, R.D. Porter
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • T. Arias, Z. Baraissov, M.M. Kelley, D.A. Muller, J.P. Sethna, N. Sitaraman
    Cornell University, Ithaca, New York, USA
  • K.D. Dobson
    University of Delaware, Newark, Delaware, USA
 
  Reducing surface roughness and attaining stoichiometry of Nb3Sn superconducting films are required to push their superheating field to the theoretical limit in SRF cavities. As such, we explore direct electrochemical processes that minimize involving foreign elements to deposit high-quality Sn, Nb, and NbxSn films on Nb and Cu surfaces. These films are then thermally annealed to Nb3Sn. We find that smooth Sn pre-depositions via electroplating on Nb surfaces significantly reduce the average roughness of resultant Nb3Sn to 65 nm, with a dramatic reduction in power intensity at medium special frequencies. Structural and superconducting properties demonstrate a Nb3Sn A15 phase with a stoichiometry of 25 at% Sn. This process is being scaled-up to a 3.9 GHz cavity. Moreover, preliminary results on electroplating on Cu surface show that Nb plating undergoes a slow growth rate while subsequent Sn plating on the plated Nb surface can be controlled with varied thickness. The Nb plating process is currently being optimized.  
DOI • reference for this paper ※ doi:10.18429/JACoW-SRF2021-WEOTEV03  
About • Received ※ 09 July 2021 — Revised ※ 09 August 2021 — Accepted ※ 21 August 2021 — Issue date ※ 16 January 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPTEV004 Surface Oxides on Nb and Nb3Sn Surfaces: Toward a Deeper Understanding 836
 
  • Z. Sun, M. Liepe, T.E. Oseroff, R.D. Porter
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • T. Arias, Z. Baraissov, D.A. Muller, N. Sitaraman
    Cornell University, Ithaca, New York, USA
  • C. Dukes
    University of Virginia, Charlottesville, Virginia, USA
  • D. Johnson-McDaniel, M. Salim
    CCMR, Ithaca, New York, USA
 
  Surface oxides on Nb and Nb3Sn SRF cavities, as a thin ’dirty’ layer, could be critical to their performance as suggested by recent theory. Although these oxides have been studied in the past, we intend here to provide a deeper understanding based on a systematic study on coupon samples that have been processed under the different conditions currently used in SRF cavity treatments. Our aim is to obtain a more complete picture of the oxide evolution. This then might help to explain the observed cavity performance variation, and might allow designing a process to achieve a designed, optimized surface with controlled oxides types and thickness. We find that the surface oxides are in amorphous phase that exhibits normal conducting behaviors, while the pentoxide further degrades with time. Also, we observed a thin hydroxide layer on the outermost surface and possibly Nb(OH)x motifs in the bulk. Moreover, distinctive oxide structures were found in Nb3Sn samples from vapor diffusion, electroplating, and sputtering. The semiconducting SnOx appeared through the oxide depth in vapor diffused Nb3Sn, while a ~1 nm SnOx layer merely exists at the outermost surface of electroplated Nb3Sn.  
DOI • reference for this paper ※ doi:10.18429/JACoW-SRF2021-THPTEV004  
About • Received ※ 09 July 2021 — Revised ※ 11 August 2021 — Accepted ※ 21 August 2021 — Issue date ※ 04 November 2021
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)