Paper | Title | Page |
---|---|---|
MOP051 | 3.9 GHz SRF Production Cavities for LCLS-II | 173 |
|
||
Funding: This work was supported by the US DOE and the LCLS-II Project. The main part of the SRF linac for the Linac Coherent Light Source II (LCLS-II) at SLAC will consist of 35 cryomodules with superconducting RF cavities operating at 1.3 GHz. In addition, two cryomodules with 3.9 GHz cavities will be installed and help to linearize the longitudinal phase space of the beam. During the design verification phase, four prototype 9-cell 3.9 GHz cavities had been built by industry and then processed, including chemical surface removal and heat treatment, and tested at Fermi National Accelerator Laboratory. Based on the resulting cavity treatment recipe, 24 cavities (for two cryomodules to be installed in the linac and one spare cryomodule) have been built by industry and tested at Fermilab prior to cryomodule string assembly. We present an overview of the cavity production and the results of the vertical acceptance tests for the LCLS-II 3.9 GHz cavities. |
||
![]() |
Poster MOP051 [1.015 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-MOP051 | |
About • | paper received ※ 02 July 2019 paper accepted ※ 03 July 2019 issue date ※ 14 August 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOP080 | Latest Progress in Designs and Testings of PIP-II Power Couplers | 263 |
|
||
Proton Improvement Plan – II (PIP-II) project is under go in Fermi National Laboratory. Main part of the project is 800 MeV proton superconducting accelerator which includes 116 superconducting cavities of 5 different types and three 162.5, 325 and 650 MHz frequencies. Key elements of accelerator which determine a reliable operation are main couplers for superconducting cavities. This paper describes the latest progress in design and testing of main couplers for PIP-II projects. | ||
![]() |
Poster MOP080 [0.881 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-MOP080 | |
About • | paper received ※ 18 June 2019 paper accepted ※ 30 June 2019 issue date ※ 14 August 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOP092 | Overview of LCLS-II Project Status at Fermilab | 302 |
|
||
The superconducting RF Continuous-Wave (CW) Linac for the LCLS-II consists of thirty-five 1.3 GHz and two 3.9 GHz cryomodules that Fermilab and Jefferson Lab are jointly producing in collaboration with SLAC. Fermilab¿s scope of work is to build, test, and deliver half the 1.3 GHz and all the 3.9 GHz cryomodules and to design and procure components for the cryogenic distribution system. Fermilab has primary responsibility for delivering a working design. The cryomodule design basis was the European XFEL but several elements evolved to meet CW operation requirements and specifics of the SLAC tunnel. There have been several challenges faced during the design, assembly, testing and transportation of the cryomodules which have required design updates. Success in overcoming these challenges is attributable to the strength of the LCLS-II SRF Collaboration (Fermilab, Jefferson Lab and SLAC with extensive help from DESY and CEA/Saclay). The cryogenic distribution system has progressed relatively well and there are valuable Lessons Learned. An overview of the status, accomplishments, problems encountered, solutions developed, and a summary of Lessons Learned will be presented. | ||
![]() |
Poster MOP092 [0.393 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-MOP092 | |
About • | paper received ※ 20 June 2019 paper accepted ※ 30 June 2019 issue date ※ 14 August 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THP060 | Experience With LCLS-II Cryomodule Testing at Fermilab | 1018 |
|
||
Funding: This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics. The Cryomodule Test Stand (CMTS1) at Fermilab has been engaged with testing 8-cavity 1.3 GHz cryomodules designed and assembled for the LCLS-II project at SLAC National Accelerator Laboratory since 2016. Over these three years twenty cryomodules have been cooled to 2K and power tested in continuous wave mode on a roughly once per month cycle. Test stand layout and testing procedures are presented together with results from the cryomodules tested to date. Lessons learned and future plans will also be shared. |
||
![]() |
Poster THP060 [2.774 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-THP060 | |
About • | paper received ※ 22 June 2019 paper accepted ※ 30 June 2019 issue date ※ 14 August 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |