Author: Kobets, V.V.
Paper Title Page
MOY02 NICA Ion Coolider at JINR 12
 
  • E. Syresin, N.N. Agapov, A.V. Alfeev, V. Andreev, A.A. Baldin, A.M. Bazanov, O.I. Brovko, V.V. Bugaev, A.V. Butenko, D.E. Donets, E.D. Donets, E.E. Donets, A.V. Eliseev, G.A. Filatov, V.V. Fimushkin, A.R. Galimov, B.V. Golovenskiy, E.V. Gorbachev, A. Govorov, A.Yu. Grebentsov, E.V. Ivanov, V. Karpinsky, V. Kekelidze, H.G. Khodzhibagiyan, A. Kirichenko, A.G. Kobets, V.V. Kobets, S.A. Korovkin, S.A. Kostromin, O.S. Kozlov, K.A. Levterov, D.A. Lyuosev, A.M. Malyshev, A.A. Martynov, S.A. Melnikov, I.N. Meshkov, V.A. Mikhailov, Iu.A. Mitrofanova, V.A. Monchinsky, A. Nesterov, A.L. Osipenkov, A.V. Philippov, R.V. Pivin, D.O. Ponkin, S. Romanov, P.A. Rukojatkin, I.V. Shirikov, A.A. Shurygin, A.O. Sidorin, V. Slepnev, A. Slivin, G.V. Trubnikov, A. Tuzikov, B. Vasilishin, V. Volkov
    JINR, Dubna, Moscow Region, Russia
  • I.V. Gorelyshev, A.V. Konstantinov, K.G. Osipov
    JINR/VBLHEP, Dubna, Moscow region, Russia
 
  The Nuclotron-based Ion Collider fAcility (NICA) is under construction in JINR. The NICA goals are providing of colliding beams for studies of hot and dense strongly interacting baryonic matter and spin physics. The accelerator facility of collider NICA consists of following elements: acting Alvarez-type linac LU-20 of light ions at energy 5 MeV/u, constructed a new light ion linac of light ions at energy 7 MeV/n and protons at energy 13 MeV, new acting heavy ion linac HILAC with RFQ and IH DTL sections at energy 3.2 MeV/u, new acting superconducting booster synchrotron at energy up 600 MeV/u, acting superconducting synchrotron Nuclotron at gold ion energy 4.5 GeV/n and mounted two Collider storage rings with two interaction points. The status of acceleration complex NICA is under discussion.  
slides icon Slides MOY02 [15.467 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-RuPAC2021-MOY02  
About • Received ※ 24 September 2021 — Revised ※ 25 September 2021 — Accepted ※ 07 October 2021 — Issued ※ 12 October 2021
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOB02
Linear Electron Accelerator LINAC-200, Status of Work and Prospects  
 
  • V.V. Kobets, M. Gostkin, M.A. Nozdrin, Y.A. Samofalova, G. Shirkov, A. Trifonov, K. Yunenko, A. Zhemchugov
    JINR, Dubna, Moscow Region, Russia
  • A.E. Brukva
    JINR/DLNP, Dubna, Moscow region, Russia
  • V. Shabratov
    JINR/VBLHEP, Moscow, Russia
 
  The LINAC-200 linear electron accelerator is created on the basis of the MEA accelerator transported to JINR from NIKHEF (Netherlands) In August 2017, the physical launch of the LINAC-200 facility (the first stage of the LINAC-800 facility) with an electron energy of 220 MeV was carried out. The accelerator operates in a pulsed mode. The duration of the current pulse is 0.1 - 3.0 mcs, the amplitude is from 40 mA to single electrons. The energy of electrons can be smoothly changed within the range of 30 - 200 MeV. This makes it possible to use the accelerator for testing detectors, as well as for studies of the radiation resistance of materials and other works.  
slides icon Slides MOB02 [8.073 MB]  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPSA01
The New Light-Ion Linac for the NICA Injection Complex  
 
  • B.V. Golovenskiy, A.R. Galimov, A. Govorov, V.V. Kobets, V.A. Monchinsky
    JINR, Dubna, Moscow Region, Russia
  • V.P. Akimov, A.M. Bazanov, A.S. Bogatov, A.V. Butenko, D.E. Donets, D.S. Letkin, D.O. Leushin, K.A. Levterov, D.A. Lyuosev, A.A. Martynov, V.V. Mialkovskiy, K.G. Osipov, D.O. Ponkin, I.V. Shirikov, E. Syresin, A. Tuzikov, A.A. Voronin
    JINR/VBLHEP, Dubna, Moscow region, Russia
  • H. Höltermann, B. Koubek, U. Ratzinger
    BEVATECH, Frankfurt, Germany
  • A. Schempp
    IAP, Frankfurt am Main, Germany
 
  A joint team from JINR (Dubna, Russia) and Bevatech GmbH (Frankfurt-am-Main, Germany) is now realizing the new light ion linac LILac for the realization of the NICA project. The resonator design, the beam dynamics calculations, the vacuum system, RF system are presented.  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPSA12
LUE-200 SLED System  
 
  • K.I. Mikhailov
    JINR/FLNP, Moscow Region, Russia
  • V.V. Kobets, A.P. Sumbaev
    JINR, Dubna, Moscow Region, Russia
 
  SLED systems are currently often used on accelerators with a high acceleration rate. The SLED systems are installed on the feeders of both accelerating structures of the LUE-200 linac. After installing a separate thermostatting system on the second stage of the linac, it became necessary to bring the SLED systems and accelerating structures to a single frequency. The paper discusses methods for tuning the eigenfrequency of resonators and accelerating structures, the influence of different operating modes of the SLED system on the electron energy spectrum, plans for upgrading the thermostatting system of the linac.  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPSA21
The Control System of the Linac-200 Electron Accelerator at JINR  
 
  • A. Trifonov, M. Gostkin, V.V. Kobets, M.A. Nozdrin, A. Zhemchugov
    JINR, Dubna, Moscow Region, Russia
 
  The linear accelerator Linac-200 at JINR is constructed to provide electron test beams with energy up to 200 MeV to carry out particle detector R&D, to perform studies of advanced methods of beam diagnostics, and to work as an irradiation facility for applied research. While the accelerator largely reuses refurbished parts of the MEA accelerator from NIKHEF, the accelerator control system is completely redesigned. A new distributed control system has been developed using the Tango toolkit. The key subsystems of the accelerator (including focusing and steering magnets control, vacuum control system, synchronization system, electron gun control system, precise temperature regulation system) were redesigned or deeply modernized. This report presents the design and the current status of the control system of the Linac-200 machine.  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPSB44 Design and Simulation of an S-Band RF Photogun for a New Injector of the Accelerator Linac-200 at JINR 322
 
  • Y.A. Samofalova, V.V. Kobets, M.A. Nozdrin, A. Zhemchugov
    JINR, Dubna, Moscow Region, Russia
  • A.M. Barnyakov
    BINP SB RAS, Novosibirsk, Russia
 
  A new 2.856 GHz S-band RF photogun for the generation of ultrashort electron beams at the LINAC-200 accelerator at JINR is simulated. The beam parameters at the photogun output are determined to meet the requirements of the LINAC-200 injection. The general design of the photogun is presented. The electrodynamic parameters are determined and the accelerating field distribution is calculated. The particle dynamics is simulated and analyzed to obtain the required beam properties.  
DOI • reference for this paper ※ doi:10.18429/JACoW-RuPAC2021-TUPSB44  
About • Received ※ 29 September 2021 — Revised ※ 01 October 2021 — Accepted ※ 09 October 2021 — Issued ※ 17 October 2021
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEA02 Acceleration the Beams of He⁺ and Fe14+ Ions by HILAC and its Injection into NICA Booster in its Second Run 65
 
  • K.A. Levterov, V.P. Akimov, A.M. Bazanov, A.V. Butenko, D.E. Donets, D.S. Letkin, D.O. Leushin, D.A. Lyuosev, A.A. Martynov, V.V. Mialkovskiy, D.O. Ponkin, I.V. Shirikov, A.O. Sidorin, A. Tuzikov
    JINR/VBLHEP, Dubna, Moscow region, Russia
  • D. Egorov, A.R. Galimov, B.V. Golovenskiy, A. Govorov, V.V. Kobets, A.D. Kovalenko, V.A. Monchinsky, E. Syresin, G.V. Trubnikov
    JINR, Dubna, Moscow Region, Russia
 
  Injector of NICA accelerating facility based on the Heavy Ion Linear Accelerator (HILAC) is aimed to inject the heavy ions having atomic number A~200 and ratio A/Z - 6.25 produced by ESIS ion source accelerated up to the 3.2 MeV for the injection into superconducting synchrotron (SC) Booster. The project output energy of HILAC was verified on commissioning in 2018 using the beams of carbon ions produced with the Laser Ion Source and having ratio A/Z=6 that is close to the project one. Beams of He1+ ions were injected into Booster in its first run and accelerated in 2020. In 2021 ions of Fe14+ produced with the LIS were injected and accelerated up to 200 MeV/u. Beam formation of Fe ions and perspectives of using LIS for the production the ions with high atomic mass A and ratio A/Z matching to HILAC input parameters are described.  
slides icon Slides WEA02 [12.908 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-RuPAC2021-WEA02  
About • Received ※ 07 October 2021 — Revised ※ 08 October 2021 — Accepted ※ 13 October 2021 — Issued ※ 14 October 2021
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPSC05 Modeling of the Energy Compression System SLED for the LINAC-200 Accelerator 349
 
  • K. Yunenko, M. Gostkin, V.V. Kobets, A. Zhemchugov
    JINR, Dubna, Moscow Region, Russia
 
  This paper is devoted to the research of the possibility of increasing the output energy of an electron beam at the LINAC-200 linear accelerator by using the SLED energy compression system with constant parameters of the storage cavities. In order to select the necessary parameters and characteristics for the successful creation of this system on the acceleratorm, the SLED system structure simulation and the characteristics of cylindrical hollow resonators calculation were conducted using the CST MICROWAVE STUDIO program.  
DOI • reference for this paper ※ doi:10.18429/JACoW-RuPAC2021-WEPSC05  
About • Received ※ 18 September 2021 — Revised ※ 01 October 2021 — Accepted ※ 09 October 2021 — Issued ※ 16 October 2021
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPSC54
Linac-200 Gun Control System: Status and Plans  
 
  • M.A. Nozdrin, V.V. Kobets, V.F. Minashkin, A. Trifonov
    JINR, Dubna, Moscow Region, Russia
 
  Due to the development of the global Tango-based control system for Linac-200 accelerator, the new electron gun control system software was developed. Major gun electronics modification is foreseen. Current gun control system status and modification plans are reported.  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)