Beams formation for the injection into NICA Booster

PIAN

Levterov K. on behalf of Acceleration Division

Area layout

HILAC & LILAC – two injectors for NICA

Beams of polarized particles $p\uparrow \mu d\uparrow$ and light ions will be accelerated by LILAC (now it is LU-20), then injected into Nuclotron Heavy ions : HILAC + Booster + Nuclotron

Injection Facility arrangement

TOPICS

- Alvarez proton linac LU-20 as an ions injector for Nuclotron
- Heavy ion injector based on the KONUS IH-DTL accelerating structure
- Ion sources of the NICA injection facility
- Formation the beams of ions produced with the Laser Ion Source or plasma ion source with the cold hollow cathode for HILAC and Booster commissioning.
- RF beam loading and beam output energy vs RF tuning of IH2
- Summary.

Alvarez proton linac LU-20 as an ion injector

- 1974- LU-20 commissioning, 2-2.5 × 10¹¹ 20 MeV protons/pulse, 4 × 10¹² protons/pulse – record achievement
- 1971- А.М. Baldin paper "Масштабная инвариантность адронных столкновений и возможность получения пучков частиц высоких энергий при релятивистском ускорении многозарядных ионов"
- 1974 Oct LU-20 operates in 2ββλ mode as injector of αparticles and deutrons produced by duoplasmotron ion source developed in LHEP
- 1977 C⁶⁺, N⁷⁺, O⁸⁺, Ne¹⁰⁺, produced with ESIS "KRION"
- 1993 LU-20 reconstruction; proton beam current dropped down from 40 mA to 20 mA, deutron current increased from 10 mA to 14 mA

Main features and limitations of LU-20

- Only protons were accelerated in βλ mode up to 20 MeV, the other ones species in 2βλ up to 5 MeV/u
- A/Z≤3 due to the reasons of both maximum RF power limitation and vacuum breakdowns in RF cavity

Heavy ion linear Injector based on KONUS DTL structure HILAC=RFQ + IH1 + IH2

LU-20	A/Z 6.25	Туре	Length	RF power	Output energy
	RFQ	4 - rod	3.16 m	120 kW	0.3 MeV/u
	MEBT	Two QD + buncher	1.4 m	3 kW (buncher)	0.3 MeV/u
	IH1	DTL + QT	2.3 m	296 kW	2 MeV/u
	IH2	DTL	2.1 m	278 kW	3.2 MeV/u

DTL structure IH1 + IH2 Au31+, Ein=300 keV/u Eout=3.2 MeV/u Accelerating structure «KONUS» (KOmbinierte NUII grad Struktur). βλ/2 IH-mode, H110.

Main features:

• Main acceleration along a 0° synchronous particle structure with asynchronous beam injection and a surplus in bunch energy compared to the synchronous particle.

- Transverse focusing by a quadrupole triplet or a solenoid lens.
- Longitudinal focusing by a few rebunching gaps operating at φ s = -35°

"KONUS" in the world:

- HSI and HLI in GSI FAIR, Eout=1.4 MeV
- LINAC3- CERN, Eout=4.2 MeV
- Injector for Booster of AGS
- HIAF injector

Longitudinal Motion: KONUS Versus 'Neg. Synchr. Phase Structure'

Longitudinal KONUS Lattice Periodicity Illustrated on a Built Accelerator

Main parameters and design features of the HILAC

	HILAC
Species	$_{197}$ Au ³¹⁺ , $_{207}$ Bi ³⁴
Value A/Z	≤ 6.25
Input energy	17 keV/u
Output energy	3.2 MeV/u
Beam current, mA	≤10
Pulse spread behind debuncher	10-3
Emittance normalized, π мм мрад	0.6/0.4
Repetition rate	\leq 10 Hz
Frequency, MHz	100.625
Transmission, %	98

IH1 cavity with the internal triplet inside

RF power supply system based on the solid state amplifiers 140 kW- RFQ, 340 kW- IH1, 340kW-IH2 4 kW – Buncher, 4 kW - Debuncher RF pulse duration up to 200 us

Ion sources of the NICA injection facility

- Electron String Ion Source KRION-6T project ion source for HILAC heavy ion production Au³¹⁺, Bi^{+Fe33}
- Source of Polarized Ions SPI: project ion source for LILAC light ion production: p↑, d↑

• Laser Ion Source LIS:

wide light ions range: Traditional species: Li³⁺, ⁷Li³⁺, B⁴⁺, C⁴⁺, N⁵⁺, O⁶⁺, F⁷⁺, Mg⁸⁺, Si¹¹⁺ The new species: Fe

• Helium ion source with the cold hollow cathode

 $\mathrm{He^{1+}}$ - for commissioning and transmission estimation

Plasma ion source with a cold magnetron hollow cathode and magnetic plasma compression

Plasma Ion Source is designed to produce the only one species He¹⁺ to estimate HILAC transmission and for the Booster commissioning.

Gas system provides pulsed gas injection into space of magnetron discharge. Pulsed voltage up to 1 kV in the gaps between magnetron anode and magnetron cathode, and between magnetron cathode and anode was provided with the generator of HV pulses. Extraction voltage was supplied with the pulsed transformer and applied to the terminal whereas extraction electrode had a ground potential. Test bench for the TOF studies had three Faraday cups, beam modulation electrode and drift space ~1.8 m (see Fig. 2, 3). The total ion current was estimated with the signal from FC1and the value observed was up to 50 mA. There was the aperture 8 mm diameter in the bottom of the FC1.for the beam passing. About 25 cm behind the extracting electrode Faraday cup 2 and beam modulation electrode mounted together in one assembly could be placed manually on the beam way.

15

Test bench for plasma ion source

Laser ion source

Light ions with A/Z \leq 3: ⁶Li³⁺, ⁷Li³⁺, B⁴⁺, C⁴⁺, N⁵⁺, O⁶⁺, F⁷⁺, Mg⁸⁺, Si¹¹⁺. Development of the LIS is focused on the increasing of the radiation flux density on the target for the production of the ions in high charge states to provide as low A/Z ratio as possible. The previous limitation A/Z \leq 3 was limited by the maximum RF power and RF breakdown in cavity of proton linac LU-20. It seems reasonable to think about new sorts of heavier ions produced with Laser Ion Source that may be accelerated by HILAC in terms of "upgraded" A/Z=6.25.

Note that HILAC was commissioned with the beams of C^{2+} ions from LIS having mass-tocharge ratio A/Z=6 close to the project one A/Z=6.25 that the ions Au³¹⁺ or Bi³³⁺ have.

Test bench for laser plasma research

TOF spectra of He¹⁺ ions produced with Helium Ion Source Yield of of He¹⁺ ions~95%

TOF spectra of ferrum ions produced with Laser Ion Source

Fe ions charge states shot by shot evolution, lilac - SEM detector signals, blue - collected signal at the SEM input, yellow - collected signal at the analyzer input, white vertical line is TOF marker for Fe16+. Ionization energy for Fe^{16+} -489 eV, Fe^{17+} -1262 eV.

TOF spectra of carbon ions produced with Laser Ion Source

Carbon ions charge states shot by shot evolution (2us/div), green - SEM detector signals, yellow – collected signal at the SEM input, blue - collected signal at the analyzer input. Ionization energy for C^{6+} 490 eV.

2020-2021 – assembly of the HILAC-Booster channel, He¹⁺ beams accelerated with HILAC were used in the first run of NICA Booster

Beam diagnostic

2015-2018 - HILAC assembly and commissioning

The beams of $C^{2+} C^{3+} C^{4+} C^{5+} C^{6+}$ ions with a value A/Z=6 that is closed to the project one 6.25 from Laser Ion Source were accelerated for the HILAC commissioning. The energy of ions accelerated by each cavity step by step was measured.

Acceleration of the Fe¹⁴⁺ ions produced with a Laser Ion Source by HILAC and injection into Booster

Fe¹⁴⁺ ions accelerated in LEBT up to 17 keV/u, ion current duration ~2 us, 7.5 mA behind RFQ, 2.5 mA – behind IH2, 1.2 mA at the injection point. No RF beam loading was observed

RF beam loading

Level of RF power inside each cavity was controlled by the pickups signals monitoring. The detected signals of RFQ, IH1 and IH2 pickups were observed synchronously to the beam currents presented. One can see how the part of stored field energy was eaten by the beam passing through. One can also see the reaction of the amplifier – pushing back the cavity to equilibrium level after the extra requirement of beam acceleration has gone.

RF compensation is needed evidently.

RF signals from pickups under beam loading

Two energy beams at the output depending on the RF phase in IH2, phase probe behind IH1 and Faraday cup behind first bending magnet signals

 3.2 MeV/u, bunch 1.92 ns, 6mA
 1.84 MeV/u, bunch 2.12 ns, 6.5mA
 1.84 MeV/u, bunch 2.10 ns, 5/2mA

 IH1 ON
 IH1 OFF
 IH1 ON

6.5 mA

Micro bunch duration $3.2 \text{ MeV/u} \sim 1.9 \text{ ns}$ $1.82 \text{ MeV/u} \sim 2.1 \text{ ns}$

5.2 mA

Summary

- The linear heavy ion injector based on HILAC has been commissioned with the beams of C^{2+} ions having A/Z ratio close to the project one 6.25
- The beams of He¹⁺ and Fe¹⁴⁺ have been accelerated and injected into Booster in its two first runs
- Injector should be tuned for the maximum beam transmission
- The RF system should upgraded to compensate beam RF loading
- Two beam injection energies are available
- Range of accelerated ions provided by new injector may be extended due to upgraded LIS based on Nd-YAG laser and "upgraded" ratio A/Z=6.25 available for HILAC.

Thanks