Paper | Title | Page |
---|---|---|
MOXMH03 | Status of Accelerator Complex NICA | 12 |
|
||
The Nuclotron-based Ion Collider fAcility (NICA) is under construction in JINR. The NICA goals are providing of colliding beams for studies of hot and dense strongly interacting baryonic matter and spin physics. The accelerator facility of collider NICA consists of following elements: acting Alvarez-type linac LU-20 of light ions at energy 5 MeV/u, constructed a new light ion linac at ion energy 7 MeV/u with additional acceleration section for protons at energy 13 MeV, acting heavy ion linac HILAC with RFQ and IH DTL sections at energy 3.2 MeV/u, superconducting booster synchrotron at energy up 600 MeV/u, acting superconducting synchrotron Nuclotron at gold ion energy 4.5 GeV/n and two collider storage rings with two interaction points. The status of acceleration complex NICA is under discussion. | ||
![]() |
Slides MOXMH03 [21.679 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-RUPAC2018-MOXMH03 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WECAMH02 | Light Ion Linear Accelerator up to 7 AMeV for NICA | 68 |
|
||
In the frame of the NICA ion collider upgrade a new light ion frontend linac (LILac) for protons and ions with a mass to charge ration of up to 3 will be built. LILac will consist out of 3 parts: 1. a normal conducting Linac up to 7 AMeV, 2. a normal conducting proton energy upgrade up to 13 AMeV, 3. a superconducting section. The normal conducting Linac up to 7 AMeV will be built in collaboration between JINR and Bevatech GmbH. The technical design of LILac up to 7 AMeV is discussed in this paper. | ||
![]() |
Slides WECAMH02 [23.545 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-RUPAC2018-WECAMH02 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WECAMH06 | Progress of the NICA Complex Injection Facility Development | 75 |
|
||
The new accelerator complex Nuclotron-based Ion Collider fAcility (NICA) is under development and construction at JINR, Dubna now. This complex is assumed to operate using two injectors: the Alvarez type linac LU-20 as injector of light ions, polarized protons and deuterons and a new linac HILAc - injector of heavy ions beams. The modernization of Alvarez-type linac began in 2016 by commissioning of new RFQ foreinjector, and in 2017 the new buncher in front of linac has been installed. The first Nuclotron run with new buncher was performed in January 2018 with beams of Xe+, Ar+ and Kr+. The beam produced by KRION-6T ion source were successfully injected and accelerated in the Nuclotron ring during the last run #55. Main results of the last Nuclotron run and plans for future development of NICA injection complex are presented in this paper. | ||
![]() |
Slides WECAMH06 [22.501 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-RUPAC2018-WECAMH06 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WECBMH01 |
Superconducting Linacs Development for Current and Future Russian Accelerator Projects: Progress and Problems | |
|
||
Superconducting linac is nowadays a standard technology to generate high-energy proton and ion beams especially for CW operation mode. Starting from SNS at ORNL * superconducting radio frequency (SRF) technology and superconducting (SC) linacs are changed from the exotic to classical technology of today. Many ion accelerator complexes developed in USA, EU, Japan, China, Korea and other countries for spallation neutron sources, production of radioactive ion beams and ADS (Accelerator Driven System) drivers use SC cavities. Currently, the mega-science accelerator project NICA ** (Nuclotron-based Ion Collider fAcility, JINr) as well as new proposed projects DERICA *** (Dubna Electron-Radioactive Ion Collider fAcility), NEPTUN, BELA ****(Based on ECR and Linear Accelerator multidisciplinary facility), etc. cannot be constructed without SRF technologies development in Russia. New ambitious program of SRF technology has been started few years ago by JINR in collaboration with MEPhI, NRC KI ITEP, BSU, PTI NANB, TRIUMF and GSI. Current progress in general conceptual design of new SC linacs, beam dynamics simulation of SC cavities and related issues will be discussed in this presentation.
* N. Holtkamp. Proc. of EPAC'2006, 29-33. ** G. Trubnikov, N. Agapov, V. Alexandrov et al., Proc. of IPAC'10, 693 (2010). *** http://aculina.jinr.ru/derica.php |
||
![]() |
Slides WECBMH01 [10.811 MB] | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPSB46 |
QWR and HWR SC Cavities R&D for New Superconducting Linac for JINR Nuclotron-NICA Injection | |
|
||
A superconducting or partially superconducting linac is discussed as new injector for Nuclotron-NICA complex. New linac will accelerate protons up to 25 MeV (and up to 50 MeV at the second stage of the project) and light ions to ~7.5 MeV/u. The progress in R&D of QWR and HWR superconducting cavities is discussed in this report. The design of QWR and its normal conducting copper model is finished and PTI NANB is ready to manufacture of the prototype. Two designs of HWR were discussed: one with a cylindrical central conductor and another with the conical one. The electrodynamics design of HWR had been finished before now but it should be corrected taking into account some manufacture problems. Current results of the development of the RF coupler and the test cryostat will also present . | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |