Status of Accelerated Complex NICA

Evgeny Syresin

(NĮCA

1111

Veksler and Baldin Laboratory for High Energy Physics Joint Institute for Nuclear Research

NICA: Nuclotron based Ion Collider fAcility

NICA accelerator complex

NICA accelerators

Injection chain for heavy ions

Cryogenic heavy ion source KRION of Electron String Ion Source (ESIS) type project up to $1.5 \cdot 10^9$ Au³¹⁺ particles per cycle (achived $5 \cdot 10^8$ Au³¹⁺) at repetition frequency up to 10 Hz

Two runs at Nuclotron (2014, 2018) ESIS KRION -6T will be used for injection in booster in 2019 New ESIS will be constructed in 2020 for collider experiments

Heavy Ion Linear Accelerator HILAc

high current (10 mA), the first Linac with transistor RF amplifier

Design and fabrication by "BEVATECH OHG" Germany, Offenbach/Mainz

NICA accelerators

Injection chain for light ions RUN #52, d+,,750, MeV/u, 10⁹

New fore-injector with buncher for LU-20 + SPI

SPI

RFQ

JINR, INR, ITEP, MEPHI, Resonator is fabricated in Sneshinsk

- May '16 beam is accelerated in LU-20
- June '16 the deuteron beam from SPI is accelerated in the Nuclotron ring

SC resonators for the "LILAc" **QWR & HWR is under design and construction**

F=162.5 MHz

 E_{acc} =6.0 MV/m

 $ER_{sh}/Q_0 = 488.0$ Ohm,

 $\beta_{G} = 0.12$

T=88.0 %.

JINR, MEPHI, PHTI NANB, BSTU

The simplest design with cylindrical central conductor was chosen.

For **QWR**: ED, thermal and mechanical design was done.

The sat-file was prepared and sent to PTI NANB for copper model design and construction. T = 4.5 K

RUPAC 18, S. Polozov WECBMH01

3D model for copper prototype manufacturing (RF and measurement loops are not visible)

HWR

QWR

Two HWR will be delivered in JINR in 2020 From PhTI NANB

HILAC-Booster beam transport channel

NICA accelerators

Injection chain for heavy ions

The Booster should accelerate ions up to 600 MeV/u (for ions with Z/A = 1/6). The magnetic ring of 211 m long is placed inside the window of the Synchrophasotron yoke.

Fabrication of the magnetic system is completed.

Start of assembly – September 2018.

First (technological) run – beginning of 2019.

NICA accelerators

Injection chain for heavy ions

- The Booster should accelerate ions up to 600 MeV/u (for ions with Z/A = 1/6).
- The magnetic ring of 211 m long is placed inside the window of the Synchrophasotron yoke.

Fabrication of the magnetic system is completed.

Start of assembly – September 2018.

First (technological) run – beginning of 2019.

Line for assembling and cryogenic testing of SC-magnets

RUPAC 18, D. Nikiforov WECBMH04

Main production areas:

- Incoming inspection zone
- SC cable production hall
- SC coils production hall
- Area for assembling the magnets
- Area for the magnetic measurements under the room temperature
- Leakage test area
- Area for mounting the SC-magnets inside cryostats
- Cryogenic tests bench

450 magnets for NICA and FAIR projects

Testing of SC-magnet's for NICA booster

Parameter	Dipole	Lens	Completely manufactured:
Number of magnets	40	48	all cryostats of magnets
Max. magnetic field	1.8 T	21.5	Successfully passed cryogenic and
(gradient)		T/m	magnetic tests
Effective magnetic length	2.2 m	0.47 m	and certified for installation in the Booster
Beam pipe aperture (h/v)	128 mm	n/ 65 mm	40 dipole magnets (100%)
Radius of curvature	14.09 m	-	- 34 iens (70%)
Overall weight	1030 kσ	110 kσ	_

Cryogenic Test Results

RUPAC 18, V. Borisov WECBMH02

Magnetic measurements have good repeatability and their magnitude is within the permissible values

Relative integral harmonics of the magnetic field in the aperture of the NICA booster magnet at the radius of 30 mm as a function of the magnetic field in the magnet center.

Distribution of effective lengths of the booster dipole magnets relative variations for maximum RSD. ¹²

Electron cooling system commissioning Designed, fabricated by BINP and commissioning in booster 2017 by JINR and

	HFIG1 HFIG2	3.0E-9 0.0E+0	OFF	<u>SET-PTS</u>
--	----------------	------------------	-----	----------------

Vacuum pressure, Pa

3×10⁻⁹

Beam test at 17 June 2018 Electron energy – 5 keV, Beam current -300 mA.

Booster-Nuclotron beam transport channel

- The beam transport with minimal ion losses.
- Separation of neighbor charge states. Estimates of ion stripping at energy of 580 MeV/u: 100% Au³¹⁺ \rightarrow 80% Au⁷⁹⁺, ~20% Au⁷⁸⁺. Due to high intensity of Au⁷⁸⁺ ions they have to be extracted to an absorber. RUPAC 18,

Nuclotron in operation since 1993

Nuclotron: slow extraction ¹²C⁺⁶ beam extraction (3,5 Gev/u) RUN #55

Status of the Nuclotron 2018

Parameter	Project	Status (June 2018)
Max. magn. field, T	2	2 (1.7 T routine)
B-field ramp, T/s	1	0.8 (0.7 routine)
Accelerated particles	p-U, d↑	p↑, d↑, p - Xe
Max. energy, GeV/u	12 (p), 5.8 (d) 4.5(¹⁹⁷ Au ⁷⁹⁺)	5.6 (d, ¹² C), 3.6 (⁴⁰ Ar ¹⁶⁺)
Intensity, ions/cycle	1E11(p,d), 2E9 (A > 100)	d 4*10 ¹⁰ (2*10 ¹⁰ routine), ${}^{7}Li^{3+} 3*10^{9}$ ${}^{12}C^{6+} 2*10^{9}$ ${}^{40}Ar^{16+} 1*10^{6}$ ${}^{78}Kr^{26+} 2*10^{5}$ ${}^{124}Xe^{42+} 1*10^{4}$

Nuclotron-Collider beam transport channel

Parameters of pulsed magnet elements

TUCDMHO

Tuzikov

RUPAC 18

Α

Magnetic element	Number	Effective length, m	Max. magnetic field (gradient), T (T/m)
Long dipole	21	2	1.5
Short dipole	6	1.2	1.5
Quadrupole Q10	22	0.353	31
Quadrupole Q15	6	0.519	31
Steerer	33	0.466	0.114

Magnets of the Nuclotron-Collider channel are in development by SigmaPhi.

Start of channel commissioning – Summer 2019

NICA accelerators

Collider

The Collider ring 503.04 m long has a racetrack shape and is based on double-aperture (top-to-bottom) superconducting magnets at maximum dipole field 1.8 T;

The major parameters of the NICA Collider are the following:

- magnetic rigidity = 45 T·m;
- -ion kinetic energy range from 1 GeV/u to 4.5 GeV/u for Au⁷⁹⁺;

-energy of polarized deuterons is 6 GeV/u, protons – 12 GeV,

- vacuum in a beam chamber: 10⁻¹¹ Torr;
- zero beam crossing angle at IP;
- 9 m space for detector allocations at IP's;

Average luminosity 10^{27} cm⁻²·s⁻¹ for gold ion collisions at $\sqrt{s_{NN}} = 9$ GeV. The luminosity in the polarized mode is up to 10^{32} cm⁻²·s⁻¹.

Commissioning – 2019-2020 First technological run-2021

NICA Stage II-a (basic configuration):

- 1. Injector chain: KRION => Booster => BTL BN => Nuclotron
- 2. BTL Nuclotron => Collider
- 3. Collider equipped with
- RF-1 (barrier voltage system) for ion storage
- RF-2 in a reduced version: 2 cavities per ring instead 4 (50 kV RF amplitude instead 100 kV)
- 1 channel of S-cooling per ring (cooling of longitudinal deg. of freedom)

Result: 22 bunches of the length $\sigma \sim$ 2 m per collider ring that 5e25 cm⁻²·s⁻¹.

NICA Stage II-b (full configuration):

Collider

- + RF-2 systems in the project version
- + RF-3 systems in the project version
- + S-cooling (transverse)

Result: 22 bunches of the length σ ~ 0.6 m per collider ring that 1e27 cm $^{-2} \cdot s^{-1}$.

Joining of the magnets

Construction of magnets and doublet lenses 2018-2020 Commissioning –end of 2020.

NICA Magnets Production Status

Work	num	%	Work	Num	%
	ber	perfor		ber	
		med	Internal JINR productionИзготовле	ние в Л	ФВЭ
		works.	SC coil of dipole magnet	80+1	10%
External JINR production			SC coil of quadrupole lens	86+1	5%
Yoke of dipole magnet	80+1	25%	Coil of multipole corrector	124	0%
Yoke of quadrupole lens	86+1	10%	Coil of final focus lens	12	10%
Yoke of corrector	124	5%	Coil of vertical dipole magnet	8	10%
Yoke of vertical dipole magnet	8	11%	Thermal screen of dipole	80+1	15%
Yoke of final focus lens	12	12%	Thermal screen of lens	86+1	10%
Vacuum chamber of dipole	160	25%	Thermal screen of gap between	41	0%
Vacuum chamber of lens	172	10%	magnets		
Chamber with PU	86	2%	Thermal screen between dipole and	80+1	0%
Vacuum cryostats of dipoles	80+1	60%	lens		
Vacuum cryostats of lenses	86+1	20%	Thermal screens of cryogenic bypass	2	0%
Cryostat of cryogenic bypass	4	2%	Thermal sceens of measured period	2	0%
Cryostat of measured period	2	0%	Counter of cryogenic temperature	900	70%
Devided and corner cryostats	336	0%			
Bellow cryostat compensators	350	100%			
Suports of dipoles/doublet lenses	81/87	48%			

Construction by BINP of RF stations

RF system for basic configuration is under construction at BINP -2020 **RF** system for project configuration is under development at BINP -2021

3D model of RF3 station

3 D model of RF1 station

3D model of RF2 station Parameters of RF2 and RF3 cavities

	RF2	RF3
harmonic	22	66
Frequency, MHz	11.484÷12.914	34.452÷38.742
Rsh,Ohms	3.12·10 ⁵	2.68ର10 ^{6.}
Q	3900	6700
Rate of cavity frequency variation, kHz/s	14.7	25.7
RF voltage, kV	25	125
Number of cavities per ring	4	8

Electron Cooling System of NICA Collider, Ions ¹⁹⁷ Au⁷⁹⁺

RUPAC 18, M. Bryzgunov TUCBMH02

HV Electron Cooler for NICA Collider Design and construction at BINP Installation at NICA in 2021 together with 4 RF2 and 16 RF3 stations on 2 year early than it is planed for extended version

Parameter	Value
Electron energy, MeV Energy instability, $\Delta E/E$	0.2 – 2.5 ≤ 1·10 ⁻⁴
Electron beam current, A	0.1 - 1.0
Cooling section length, m	6.0
Solenoid magnetic field, T Field inhomogeneity, ∆B/B	0.05 − 0.2 ≤ 1·10 ⁻⁵

34

Collider injection system

RUPAC 18, A. Tuzikov TUCDMH0

Length, m	2.5
Max magnetic field, T	1
Aperture, mm×mm	45×45
Septum thickness, mm	3
Pulse shape	semisinusoidal
Pulse duration, μs	~ 10

<u>Septum</u>

- Technical design development is in progress.
- Concept of power supply has been developed.

JINR invites collaborators for construction of injection system Construction 2018-middle of 2020 Commissioning -2020

Collider beam dump system

Beam dump from upper ring

Construction of beam dump syst Construction time- 2018-2020 Commissioning -2021

Innovations based on NICA technologies

Transmutaion of nuclear fuel waste

Radiobiology

JINR invites collaborators for construction of beam transport channel and station for electronic irradiation and radiobiological stations (project JINR, ITEP)

Construction 2018-middle of 2020 Commissioning -2020

Collider building

23-04-2018 Mon 09:33:48

Thank you for your attention!