A   B   C   D   E   F   G   H   I   K   L   M   P   Q   R   S   T   U   V  


Paper Title Other Keywords Page
TUP002 Performance Tests of Digital Signal Processing for GSI Synchrotron BPMs synchrotron, closed-orbit, acceleration, controls 79
  • K. Lang, P. Forck, T. Hoffmann, P. Kowina, U. Rauch
    GSI, Darmstadt
  • G. Janša
    Cosylab, Ljubljana
  The Beam Position Monitoring System at GSI heavy ion synchrotrons consists of twelve stations. Each of the four BPM plates is connected to a Libera Hadron unit from I-Tech Company for digitization and position calculation. The raw data of one BPM sampled by 125 MS/s with 14 Bit ADCs are reduced to about 20 MB/s by the onboard FPGA, resulting in a bunch-by-bunch position readout. In addition, different timing signals with various requirements are used to verify the functionality of the FPGA algorithms. For a closed orbit measurement, the data of all twelve Liberas have to be read in parallel. For communication, the Xilinx Rocket IOs is used, that allows up to 1GBit/s data output. Over a dedicated network, the data are merged for further usage on a high performance PC. We describe the general architecture and present first performance tests.  
WEP016 MicroIOC LR-BPM - Beam Position Monitor Solution controls, instrumentation, monitoring, linac 204
  • P. Medvešček, M. Kobal
    Cosylab, Ljubljana
  • S. Artinian, J. F. Bergoz
    BERGOZ Instrumentation, Saint Genis Pouilly
  MicroIOC LR-BPM product offers complete beam position monitoring solution to be used on transfer lines or linear accelerators where bunch repetition rate is low (< 50Hz). It consists of Log ratio Beam position monitor (LR-BPM) modules from Bergoz instrumentation and of microIOC analog to digital acquisition unit (microIOC-ADA) from Cosylab. In this paper we present the detailed operation of the system and the results from testing that was performed at Soleil accelerator in May 2008. In this particular test microIOC LR-BPM proved to be a complete stand alone solution with only signals from the beam pickup detectors as inputs. It is capable of providing up to 8 X-Y beam positions and since its design is based on a single board computer inside the ADA unit it is easily integrated in a higher level control system software. Furthermore the position data is available to the control system clients over the external network via Ethernet link. EPICS was used as a control system although the product can accommodate other types of control systems that can run on x86 platform.  
poster icon Poster