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Abstract 

The Beam Position Monitoring System at GSI heavy 
ion synchrotron SIS18 consists of twelve shoe-box PUs. 
Each of the four BPM plates is pre amplified and 
connected to a Libera Hadron unit from I-Tech Company 
for digitization and position calculation. The raw data of 
one BPM sampled by 125 MS/s with 14 Bit ADCs are 
reduced to about 20 MB/s by the onboard FPGA, using 
digital filter algorithms, resulting in a bunch-by-bunch 
position readout. In addition, different timing signals with 
various requirements are used to verify the functionality 
of the FPGA algorithms. For a closed orbit measurement, 
the data of all twelve Liberas have to be read in parallel. 
A built in Xilinx Rocket IO is used for data transport, 
which allows up to 1GBit/s data output. Over a dedicated 
network, the data are merged for further usage on a high 
performance PC. We describe the general architecture, 
parts of the FPGA design implementation and present 
first performance tests. 

 
INTRODUCTION 

At present a BPM upgrade program was started at GSI 
with the goal to implement different measurement modes 
for the detection of the beam position. This system shall 
also be used at the FAIR SIS100 and therefore upwards 
scaleable because of the higher amount of BPM stations. 

The measurement modes include closed orbit, turn-by-
turn, bunch-by-bunch and also tune measurement in 
horizontal and vertical plane. The desired resolution is 
0.1mm. In SIS18 the accelerating RF varies with large 
dynamics from 850 kHz to 5 MHz. SIS 18 is operated 
with four filled buckets. Position calculation is done 
inside Liberas Xilinx Virtex II Pro FPGA[1] with a filter 
algorithm to generate the integration windows for the 
bunch signals. 

To allow the different measurement modes without 
interference each other, all bunch positions from all 
BPMs will be concentrated at two server PCs in one 
accelerator cycle. The operator has then the possibility to 
choose, which measurement mode he wants to display. 
For controlling, Front-End Software Architecture (FESA) 
[2] from CERN is used and adapted to the requirements 
of the GSI BPM System [3]. 

PERFORMANCE TEST 
Hardware Setup 
All analog signals of the pick-ups are transmitted via long 
cables to a single electronics room. Thus all Liberas can 

be placed in one 19” rack (Fig. 1). To build a dedicated 
high performance network in which the Liberas can send 
the position data to the server PCs, a Hewlett Packard 
ProCurve 2900-24G switch is used, which connects data 
from its Gigabit Ethernet (GbE) ports to 10 Gigabit 
Ethernet (10GbE) Ports. These 10GbE ports are then 
connected to the 10GbE adapters of the server PCs. 

 
Figure 1: Schematic of BPM System with network 
connections. Red arrows: dedicated high performance 
network

One server PC is a system with two 2.0 GHz Quad-
Core Intel Xeon E5405 CPUs, 1333 MHz Front Side Bus 
and 32 GB DDR2 RAM with a Scientific Linux OS. The 
10GbE adapter installed in the server PCs is an Intel 
10GbE-MAC-Controller 82598EX for PCI-X. 

The Liberas and the server PCs also have extra ports, to 
connect them to the GSI network to get access to them for 
controlling. 

 

Position Measurement 
The goal of the new digital BPM system is the 

determination of the beam position in a bunch-to-bunch 
mode. For the bunch synchronous measurement three 
separate steps are necessary: 1) baseline restoration, 2) 
window generation and 3) integration of the bunch signal. 
The algorithm for baseline restoration is presented in [4], 
we focus on the FPGA implementation for window 
generation and signal integration. The position of a bunch 
is determined by calculating the integrals of the difference 
and sum signal of two opposing pick-up plates (horizontal 
or vertical). E.g. the horizontal beam position is 
proportional to difference of the left and right plate signal 
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divided by their sum. In order to clearly separate 
successive bunches from each other and to integrate the 
signals only over the bunch area, an exact integration 
window must be generated (Fig 2). 

 

Figure 2: Sum signal of bunches in one plane (red) and 
generated integration windows (green) 

The algorithm presented here generates the integration 
windows by inspecting the sum signals to determine flat 
regions between successive bunches [4]. To detect these 
flat regions even in noisy signals, the incoming sum 
values x(z) are continuously summed up, which leads to a 
saw-tooth like signal. Afterwards this signal is filtered 
with a median of the last five values that came in. After 
this filter process, the window is set active, if additionally 
eight successive values are strictly increasing. 

In more detail, the algorithm works as follows: The 
summation can be realized inside the FPGA with a simple 
adder. For the median determination, a buffer of five 
values in sorted order is used (Fig. 3). Each incoming 
value x(z) is written to a shift register and also compared 
in parallel with all five values in this sorted buffer, to 
determine its new storing position. The value x(z)·z-5, that 
came five clock signals before the actual value x(z), is 
delayed with the shift register. Additionally, this delayed 
value is compared in parallel with all values in the sorted 
buffer, to determine the value that stayed in the buffer 
since five clock cycles. This value has then to be removed 
from the sorted buffer. 

 

Figure 3: Example of sorted buffer after one clock cycle 
with x(z)·z-2< x(z)< x(z)·z-4 

In fact each cell of the sorted buffer is realized by a 
multiplexer with three inputs and a registered output (D 
flip-flop, dff, see Fig. 4). The inputs are connected to the 
outputs of the left and the right cell and to x(z)

. 

Exceptions are the cells at the border of the sorted buffer. 
They have just two inputs: One for x(z) and one for the 
output of their only neighbor cell. 

With the result of the two simultaneous comparisons 
the multiplexers are switched, so that the values that lie 
between x(z) and x(z)·z-5 are moved by one cell into the 
direction of x(z)·z-5 with the next clock cycle. 
Simultaneously, x(z) is inserted into the correct place. The 
median of the five values is now just the content of the 
sorted buffers third cell. 

This module only needs a latency time for the number 
of values from which the median has to be determined 
plus one clock cycle – in this case six. The width of the 
median filter is free scalable bounded by the free space of 
the FPGA. 

These filtered values are put through a shift register for 
eight values. These values are then compared with each 
other, to look if they are strictly increasing. As long as 
this precondition is fulfilled, the integration window is 
active. 

The integration of bunch data is then performed by 
summing up the incoming signals while the integration 
window is active. The position calculation itself is done 
inside a pipelined divider. 

 
Figure 4: Realization of the left three cells of the sorted 
buffer. 

Error Detection 
For a consistent and synchronized data treatment, it is 

absolutely necessary that the Server PC stores the position 
data for bunches in correct order. Because of the high 
dynamics of the bunch frequency and very different 
bunch shapes, three error cases may occur from window 
generation: A bunch generates no window, one bunch 
generates multiple windows or one window is generated 
over multiple bunches. These errors must not necessarily 
occur for every BPM for the same bunch or bunches. If 
this happens, it will lead to desynchronization. 

To make it possible for the Server PC to detect such 
errors, three timestamps are used for resynchronization. 
One timestamp is the absolute time of the RF period in 
which the integration window was found. The other two 
timestamps represent the beginning and the end of the 
integration window relative to the RF timestamp. With 
this information it is possible for a server PC to check 
whether one of the described errors occurred.  

Furthermore two data fields are used (one for horizontal 
and one for vertical plane) to display detected errors in 
the analog signal, like e.g. clipping of the input signal or 
poor signal intensity. Altogether, this leads to a data 
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record of 96 Bit for the position data of the two planes for 
one bunch. 

Because of the usage of the UDP there is no control 
mechanism to get information if the server has correctly 
received a frame. If a package were lost, the position data 
on the server for an acceleration cycle would become 
inconsistent. A counter field is added to the UDP data 
frame, which is incremented by each sent frame, so that 
the server has the possibility to check for inconsistencies. 

Data Transfer 
At the end of an acceleration cycle with 5MHz bunch 

frequency, a data rate of 480 MBit/s of position data is 
generated per BPM. For transmission to the server PCs 
the User Data Protocol inside an Ethernet jumbo frame 
with a maximum transfer unit of 9000 Byte is used. From 
the MTU, 24 Byte are used for the IP Header and 8 Byte 
for the UDP Header. This means 747 beam position data 
records can be sent per frame. In addition to the MTU, 14 
Bytes for the MAC Header and 4 Byte for the CRC 
checksum are needed. Overall this leads to a real data rate 
of about 483 MBit/s. 

In Ethernet applications, a frame has to be sent in one 
sequence without breaks. That means that the data content 
of the frame has first to be buffered inside the FPGA 
before it can be transmitted. The Xilinx FPGA of the 
Libera provides several Dual Port RAM blocks, which 
can be used for this purpose. After the buffer is filled with 
the position data, its content has to be dumped to the 
FPGA’s RocketIO for transmission. During this process, 
the content of this buffer must not be changed, but due to 
the running process of position measurement, data is still 
generated. For this reason a second buffer has been 
implemented, which can be filled while the other one is 
dumped (Fig.5). 

 Figure 5: Schematic of output buffers. 

A finite state machine (FSM) is used to observe the 
filling process and choose which buffer has to be filled. 

The values of the header fields of the different OSI 
Layers (MAC, IP and UDP) have to be constant for each 
sent frame of one Libera, but it is necessary to configure 
each Libera with individual MAC and IP addresses and 
UDP Ports. To make the FPGA Design flexible enough, a 
register block is used, which contains the complete data 

of all OSI headers in correct order. The access to the 
necessary header-fields is then allowed over Liberas 
Single Board Computer (SBC). 

The Dump FSM is triggered, when a buffer is full. It 
then starts an address counter and decides which data has 
to be transferred to the RocketIO. If the whole data of the 
buffer was transmitted, a signal is sent to the Fill FSM 
and the data switches to idle state. In this state, no data is 
transmitted over the RocketIO. 

TEST RESULTS 
Tests with the use of one server PC showed, that it is 

not capable of handling the whole amount of data, when 
all twelve Liberas send with highest data rate. At first 
Ethernet Type II Frames with an MTU of 1500 Bytes 
were used with an expected data rate of about 4800 
MBit/s by sending with six Liberas, which resulted in a 
high amount of package loss on the 10GbE interface of 
the server PC (Table 1). The use of jumbo Ethernet 
frames with an MTU of 9000 Bytes didn’t bring 
advancement. The monitor program of the ProCurve 
Switch showed that this loss does not occur on the way 
from the Liberas to the server PC, so that it must occur on 
the way from the 10GbE adapter to the processor.  

MTU(Byte) Packets/s MBit/s 
1500 ~157600 ~1890 
9000 ~26250 ~1890 

Table 1: Results of Data Transfer Measurement from 
Liberas to Server PC with Different MTUs 

SUMMARY AND OUTLOOK 
To solve the problems with the package loss, further 

tests are planned with a different 10GbE adapter for the 
server PC. If the necessary data rate for our whole system 
can’t be reached, it is also possible to add a further server 
PC, to reduce the incoming data for each one. 

More detailed analysis of the window generation 
algorithm showed, that it probably won’t work properly 
for all beam parameters. For this case it is planned to 
implement and test a so-called Double Threshold 
Algorithm [5], which would cover the requirements for 
both, SIS18 and SIS100. 
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