A   B   C   D   E   F   G   H   I   K   L   M   O   P   Q   R   S   T   U   V   W    

free-electron-laser

Paper Title Other Keywords Page
RPAT050 Electro Optic Bunch Length Measurements at the VUV-FEL at DESY laser, linac, electron, polarization 3111
 
  • B. Steffen, S. Casalbuoni, E.-A. Knabbe, H. Schlarb, B. Schmidt
    DESY, Hamburg
  • P. Schmüser, A. Winter
    Uni HH, Hamburg
  For the operation of a SASE FEL, the longitudinal bunch length is one of the most critical parameters. At the superconducting linac of the VUV-FEL at DESY, we have installed an electro optic sampling (EOS) experiment to probe the time structure of the electric field of the bunches to better than 100 fs rms. The field-induced birefringence of a ZnTe crystal is detected by a femtosecond laser pulse (TiSa) and the time structure is measured by scanning the relative timing of the electron bunch and the TiSa pulse. A synchronization stability of better than 50 fs between laser and accelerator RF has been achieved. First results on the synchronization measurements and for the bunch length as function of the linac parameters are presented.  
 
RPPE074 The Multichannel Deflection Plates Control System for the ALF Facility at the APS ion, octupole, power-supply, controls 3937
 
  • B. Deriy
    ANL, Argonne, Illinois
  Funding: Work supported by U.S. Department of Energy, Office of Basic Energy Sciences, under Contract No. W-31-109-ENG-38.

A deflection plate control system was developed as part of SPIRIT (Single Photon Ionization / Resonant Ionization to Threshold), a new secondary neutral mass spectrometry (SNMS) instrument that uses tunable vacuum ultraviolet light from the ALF (Argonne Linear Free-electron laser) facility at the APS for postionization. The system comprises a crate controller with PC104 embedded computer, 32 amplifiers, and two 1-kV power supplies. Thirty-two D/A converters are used to control voltages at the deflection plates within ± 400 V with 100-mV resolution. An algorithm of simultaneous sweeping of up to 16 XY areas with 10-μs time resolution also has been implemented in the embedded computer. The purpose of the system is to supply potentials to various ion optical elements for electrostatic control of keV primary and secondary ion beams in this SNMS instrument. The control system is of particular value in supplying (1) bipolar potentials for steering ions, (2) multiple potentials for octupole lenses that shape the ion beams, and (3) ramped deflection potentials for rastering the primary ion beam. The system has been in use as part of the SPIRIT instrument at the ALF facility since 2002.