A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Green, M.A.

Paper Title Page
MPPT058 Progress on the Focus Coils for the MICE Channel 3417
 
  • M.A. Green
    LBNL, Berkeley, California
  • Y. Ivanyushenkov
    CCLRC/RAL, Chilton, Didcot, Oxon
  • W. Lau, R. Senanayake, S.Q. Yang
    OXFORDphysics, Oxford, Oxon
 
  Funding: This work was supported by the Office of Science, U.S. Department of Energy under DOE contract number DE-AC03-76SF00098.

This report describes the progress on the magnet part of the absorber focus coil module for the international Muon Ionization Cooling Experiment (MICE). MICE consists of two cells of a SFOFO cooling channel that is similar to that studied in the level 2 study of a neutrino factory. The MICE absorber focus coil module consists of a pair of superconducting solenoids, mounted on an aluminum mandrel. The coil package that is in its own vacuum vessel surrounds an absorber, which does the ionization cooling of the muons. Either a liquid or solid absorber is within a separate vacuum vessel that is within the warm bore of the superconducting magnet. The superconducting focus coils may either be run in the solenoid mode (with the two coils at the same polarity) or in the flip mode (with the coil at opposite polarity causing the field direction to flip within the magnet bore). The superconducting coils will be cooled using a pair of small 4 K coolers. This report discusses the progress on the MICE focusing magnets, the magnet cooling system and the magnet current supply system.

 
MPPT059 Progress on the Coupling Coil for the MICE Channel 3468
 
  • M.A. Green, D. Li, S.P. Virostek, M.S. Zisman
    LBNL, Berkeley, California
  • Y. Ivanyushenkov
    CCLRC/RAL, Chilton, Didcot, Oxon
  • W. Lau, A. E. White, H. Witte, S.Q. Yang
    OXFORDphysics, Oxford, Oxon
 
  Funding: This work was supported by the Office of Science, U.S. Department of Energy under DOE contract number DE-AC03-76SF00098.

This report describes the progress on the coupling coil module for the international Muon Ionization Cooling Experiment (MICE). MICE consists of two cells of a SFOFO cooling channel that is similar to that studied in the level 2 study of a neutrino factory. The MICE RF coupling coil module consists of a superconducting solenoid, mounted around four cells of conventional 201.25 MHz closed RF cavities. This report discusses the progress that has been made on the superconducting coupling coil that is around the center of the RF coupling module. This report also describes the process one would use to cool the coupling coil using a single small 4 K cooler. The coupling magnet power system and quench protections system is also described.

 
TPPP018 Progress on the MICE Liquid Absorber Cooling and Cryogenic Distribution System 1601
 
  • M.A. Green
    LBNL, Berkeley, California
  • E. Baynham, T.W. Bradshaw, P. Drumm, Y. Ivanyushenkov
    CCLRC/RAL, Chilton, Didcot, Oxon
  • M.A.C. Cummings
    Northern Illinois University, DeKalb, Illinois
  • S. Ishimoto
    KEK, Ibaraki
  • W. Lau, S.Q. Yang
    OXFORDphysics, Oxford, Oxon
 
  Funding: This work was supported by the Office of Science, U.S. Department of Energy under DOE contract number DE-AC03-76SF00098.

This report describes the progress made on the design of the liquid hydrogen absorber for the international Muon Ionization Cooling Experiment (MICE). The absorber consists of a 21-liter vessel that contains liquid hydrogen (1.5 kg) or liquid helium (2.63 kg). The cryogen vessel is within the warm bore of the superconducting focusing magnet for the MICE. The purpose of the magnet is to provide a low beam beta region within the absorber. For safety reasons, the vacuum vessel for the hydrogen absorber is separated from the vacuum vessel for the superconducting magnet and the vacuum that surrounds the RF cavities or the detector. The absorber has two 300 mm-diameter thin aluminum windows. The vacuum vessel around the absorber has a pair of thin aluminum windows that separate the absorber vacuum space from adjacent vacuum spaces. Because the muon beam in MICE is of low intensity, there is no beam heating in the absorber. As a result, the absorber can be cooled using a single 4 K cooler. This report describes progress on the MICE liquid absorber and its cryogenic cooling system.

 
WPAE045 Progress on RF Coupling Coil Module Design for the MICE Channel 2869
 
  • D. Li, M.A. Green, S.P. Virostek, M.S. Zisman
    LBNL, Berkeley, California
  • W. Lau, A. E. White, S.Q. Yang
    OXFORDphysics, Oxford, Oxon
 
  Funding: This research work is supported by the US Department of Energy, under Contract No. DE-AC03-76SF00098.

We describe the progress on the design of the RF coupling coil (RFCC) module for the international Muon Ionization Cooling Experiment (MICE) at Rutherford Appleton Laboratory (RAL) in the UK. The MICE cooling channel design consists of two SFOFO cells that is similar to that of the US Study-II of a neutrino factory. The MICE RFCC module comprises a superconducting solenoid, mounted around four normal conducting 201.25-MHz RF cavities. Each cavity has a pair of thin curved beryllium windows to close the conventional open beam irises, so thatnecessitating separate power feeds for each of the four cavities has to be separately powered. The coil package that surrounds the RF cavities sits is mounted on a vacuum vessel. The RF vacuum is shared between the cavities and the vacuum vessel around the cavities such that. Therefore there is no differential pressure on the thin beryllium windows. This paper discusses the design progress of the RFCC module, the fabrication progress of a prototype 201.25-MHz cavity, and the superconducting coupling coil that will be cooled using a single, small 4 K cooler.

 
RPAE070 Recent Developments at Aladdin 3813
 
  • K. Jacobs, J. Bisognano, R.A. Bosch, D. Eisert, M.V. Fisher, M.A. Green, R.G. Keil, K. J. Kleman, R.A. Legg, G.C. Rogers, J.P. Stott
    UW-Madison/SRC, Madison, Wisconsin
 
  Funding: Work supported by the U.S. NSF under Award No. DMR-0084402.

Following on the success of lower emittance operation at 800 MeV, SRC is pursuing a number of additional enhancements to the performance of the Aladdin storage ring. Work on Aladdin has included development of low emittance lattices at 1 GeV, which will maximize the capabilities of a recently installed spectromicroscopy beamline and a proposed high-resolution keV beamline. Installation of one-meter long insertion devices in the short straight sections within the quadrant arcs of the four sided storage ring is being considered to increase the number of undulator beamlines from four to possibly eight. Studies have been made to determine what is the minimum insertion device gap that does not interfere with nominal ring operation (injection, ramping, and lifetime at full energy), and indicate that smaller-gapped devices for higher photon energy are reasonable. Lifetime increases or further emittance reductions appear possible with modest aperture increases at a small number of points on the ring. Finally, planning is under way for long term projects such as a new injector or a next generation VUV/soft-xray source for the Midwest. Details will be presented.