Keyword: octupole
Paper Title Other Keywords Page
TUB4CO04 Progress on the Magnetic Performance of Planar Superconducting Undulators ion, undulator, photon, quadrupole 477
 
  • M. Kasa, C.L. Doose, J.D. Fuerst, E. Gluskin, Y. Ivanyushenkov
    ANL, Argonne, Illinois, USA
 
  Funding: Work supported by the U.S. Department of Energy, Office of Science, under Contract No. DE-AC02-06CH11357.
One of the primary goals of the superconducting undulator (SCU) program at the Advanced Photon Source (APS) is to achieve a high quality undulator magnetic field without the need for magnetic shimming to tune the device. Over the course of two years, two SCUs were designed, manufactured, assembled, and tested at the APS. Both SCUs were one meter in length with a period of 1.8 cm. After magnetic measurements of the first undulator were completed, several design changes were made in order to improve the quality of the undulator magnetic field. The design modifications were implemented during construction and assembly of the second SCU. The details of the design modifications along with a comparison of the magnetic measurement results will be described.
 
slides icon Slides TUB4CO04 [6.426 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-TUB4CO04  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOB11 Quantification of Octupole Magnets at the University of Maryland Electron Ring ion, quadrupole, multipole, lattice 503
 
  • H. Baumgartner, B. Beaudoin, S. Bernal, I. Haber, T.W. Koeth, D.B. Matthew, K.J. Ruisard, M.R. Teperman
    UMD, College Park, Maryland, USA
 
  Funding: Funding for this project is provided by DOE-HEP and the NSF Accelerator Science Program
The intensity frontier is limited by the ability to propagate substantial amounts of beam current without resulting in particle scrapping and/or losses from resonant growth and halo formation. Modern accelerators are based on the theories developed in the 1950's that assume particle motion is bounded and subject to linear forces. Recent theoretical developments have demonstrated that a strongly nonlinear lattice can be used to stably transport an intense beam has resulted in a fundamental rethinking of the conventional wisdom. A lattice composed of strong nonlinear magnets is predicted by theory to damp resonances while maintaining dynamic aperture. Results of rotating coil measurements, magnetic field scans and simulations will be presented, quantifying the multi-pole moments and fringe fields in the 1st generation Printed Circuit Board (PCB) octupoles for UMER's nonlinear lattice experiments.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-TUPOB11  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOB12 Experimental Plans for Single-Channel Strong Octupole Fields at the University of Maryland Electron Ring ion, lattice, quadrupole, focusing 507
 
  • K.J. Ruisard, H. Baumgartner, B. Beaudoin, I. Haber, T.W. Koeth, M.R. Teperman
    UMD, College Park, Maryland, USA
 
  Funding: Funding for this project and travel is provided by DOE-HEP, NSF GRFP and NSF Accelerator Science Program
Nonlinear quasi-integrable optics is a promising development on the horizon of high-intensity ring design. Large amplitude-dependent tune spreads, driven by strong nonlinear magnet inserts, lead to decoupling from incoherent tune resonances. This reduces intensity-driven beam loss while quasi-integrability ensures a well-contained beam. In this paper we discuss on-going work to install and interrogate a long-octupole channel at the University of Maryland Electron Ring (UMER). This is a discrete insert that occupies 20 degrees of the ring, consisting of independently powered printed circuit octupole magnets. Transverse confinement is obtained with quadrupoles external to this insert. Operating UMER as a non-FODO lattice, in order to meet the beam-envelope requirements of the quasi-integrable lattice, is a challenge. We discuss efforts to match the beam and optimize steering solutions. We also discuss our experiences operating a distributed strong octupole lattice.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-TUPOB12  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOB37 Diffusion Measurement From Transverse Echoes ion, quadrupole, dipole, simulation 572
 
  • Y.S. Li
    Carleton College, Northfield, Minnesota, USA
 
  Beam diffusion is an important measure of stability in high intensity beams. Traditional methods of diffusion characterization (e.g. beam scraping) can be very time-consuming. In this study, we investigate the transverse beam echo as a novel technique for measuring beam diffusion. Numerical analysis of maximum echo amplitude was compared with theoretical predictions with and without diffusion. We succeeded in performing a self-consistent measurement of the linear diffusion coefficient via a parameter scan over delay time. We also demonstrated the effectiveness of pulsed quadrupoles as a means to boost echo amplitude. Finally, multi-echo sequences were also briefly investigated. Results from this study will support planned experiments at the IOTA proton ring under construction at Fermilab.  
poster icon Poster TUPOB37 [2.109 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-TUPOB37  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOA17 On the Possibility of Using Nonlinear Elements for Landau Damping in High-Intensity Beams ion, insertion, optics, electron 729
 
  • E. Gianfelice-Wendt, Y.I. Alexahin, V.A. Lebedev, A. Valishev
    Fermilab, Batavia, Illinois, USA
 
  Funding: Work supported by Fermi Research Alliance, LLC under Contract DE-AC02-07CH11359 with the U.S. DOE
Direct space-charge force shifts the incoherent tunes down from the coherent ones switching off Landau damping of coherent oscillations at high beam intensity. To restore it the nonlinear elements can be employed which move back tunes of large amplitude particles. In the present report we consider the possibility of creating a "nonlinear integrable optics" insertion in the Fermilab Recycler to host either octupoles or hollow electron lens for this purpose. For comparison we also consider the classic scheme with distributed octupole families. It is shown that for the Proton Improvement Plan II parameters the required nonlinear tuneshift can be created without destroying the dynamic aperture.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-WEPOA17  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOB15 Comparison of Nonlinear Dynamics Optimization Methods for APS-U ion, lattice, sextupole, optics 924
 
  • Y.P. Sun, M. Borland
    ANL, Argonne, Illinois, USA
 
  Many different objectives and genetic algorithms have been proposed for storage ring nonlinear dynamics performance optimization. These optimization objectives include nonlinear chromaticities and driving/detuning terms, on-momentum and off-momentum dynamic acceptance, chromatic detuning, local momentum acceptance, variation of transverse invariant, Touschek lifetime, etc. In this paper, the effectiveness of several different optimization methods and objectives are compared for the nonlinear beam dynamics optimization of the Advanced Photon Source upgrade (APS-U) lattice. The optimized solutions from these different methods are preliminarily compared in terms of the dynamic acceptance, local momentum acceptance, chromatic detuning, and other performance measures.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-WEPOB15  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)