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• Measuring and managing diffusion is crucial in modern “intensity frontier” 
machines, where nonlinear phenomena, e.g. intrabeam scattering and space charge 
effects, can significantly increase emittance over time.

• Traditional methods to measure diffusion, e.g. beam scraping, take up to hours to 
complete. The transverse echo technique will require minutes or less.

• The echo displays high amplitude sensitivity to small phase space perturbations, 
making it an ideal tool to probe weak diffusion.

• Simultaneously, we need amplitude-boosting techniques to counter strong 
diffusion (e.g. space charge effects), so that the echo signal remains measurable. 

• In this study, we develop theory and simulation to:
• Explore the behavior of transverse echoes under diffusion.
• Investigate pulsed quadrupoles as a method to boost echo amplitude.
• Provide recommendations for the planned beam echo measurement system in 

the future IOTA storage ring at Fermilab. 

Diffusion

Theory
• The transverse echo is a recoherence of the beam distribution, following phase 

decoherence due to nonlinear ring elements (e.g. octupoles).
• It shows up on the BPM as an oscillation of the beam centroid, some time after an 

initial disturbance (e.g. dipole kick). Pulsed quadrupoles

• Key findings: Consistent measurement of diffusion coefficient based on 𝜏𝜏max; echo 
amplitude boost by up to 100% using pulsed quads; optimal sequence depends on 
fractional tune; pulsed sequence of single polarity can be just as effective. 

• Some further questions:
• What is the optimum pulse sequence for a given fractional tune? 
• Echo amplitude saturation observed empirically at A ≈ 0.4. How do we explain 

it? Is it possible to surpass this limit?
• How will echo dynamics change in 2D? Any coupling effects?

Simulation
• Simulation written in C, with analysis performed in Mathematica. 
• Machine parameters based on 2005 RHIC experiment.
• Simulation options include adjustable ring elements, variable 

starting distribution, variable diffusion model, pulsed 
quadrupoles and injection oscillation. 

• Simulation results agree well with theory.

• We directly measure diffusion coefficient by tracking emittance increase over a large 
number of turns. Results agree excellently with theory.

• Simulation results also demonstrate predicted relationship between echo amplitude 
and relevant parameters (below). 

• The amplitude of the echo is dependent on ring parameters. It is also extremely 
sensitive to diffusion. (Refer to equations above.)

• Key assumptions:
• Both dipole and quad kicks are weak (compared to beam spread).
• The timing of quad kick τ is much greater than decoherence time.

Introduction
• Linear diffusion model simulated by 

dipole noise.
• Echo amplitude becomes attenuated 

with diffusion.

Echo: Theory and Simulation

• Based on gradient echoes in NMR. 
• A single quad kick introduces a small, 

position-dependent Δ𝐽𝐽 to the particle 
distribution. With linear detuning, this leads 
to particles “clumping” together in phase 
space at time 2τ.

• Pulsed kicks apply a sequence of small Δ𝐽𝐽 ‘s 
that amplify each other, resulting in a 
tighter “clump” in phase space.

• Optimal sequence highly dependent on 
fractional tune. We investigated several 
possible sequences. 

• Maximum echo amplification close to 100% 
(up to saturation point).

Conclusions and Further Work
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• Typical echo sequence: 
• At t = 0, apply one-turn dipole kick θ. 
• At t = τ, apply one-turn quadrupole kick q. 
• Near time 2τ , the echo signal appears on the BPM.

Schematic of ring used in simulation.

Above: Typical simulation parameters, based on 2005 RHIC 
experiment.
Above left: Evolution of simulated beam centroid over time, 
displaying a typical echo sequence.
Left: Phase space portraits showing the dipole kick and 
phase decoherence, followed by the quadrupole kick and 
formation of the echo.
Below left: Plot of norm. echo amplitude against 
quadrupole kick strength. Simulation results in black, 
theory prediction in red. Saturation starts to set in at high 
kick strengths.
Below: Plot of norm. echo amplitude against dipole kick 
strength. Theory (red) and simulation (black) agree well 
for small kick values. Inset: Plot of fractional emittance
increase against dipole kick strength. 

Top: Emittance increase over time due 
to dipole noise, from which we deduce 
diffusion coefficient 𝐷𝐷1. 
Right: Plot of norm. echo amplitude 
versus timing of quad kick, with 
different 𝐷𝐷1 parameters. Inset:
Predicted theoretical relationships.
Far right: Plot of norm. echo 
amplitude versus detuning, again with 
different 𝐷𝐷1 values. Inset: Predicted 
theoretical relationships.

Top: Phase space portraits at 
time 2τ with single kick vs. 
alternating pulsed kicks.
Left: Various tested sequences.
Below left: Plot of norm. echo 
amplitude vs. pulse length
Below: Plot of echo boost 
factor versus fractional tune.
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