Keyword: heavy-ion
Paper Title Other Keywords Page
MOPLR051 Simulation of Gas and Plasma Charge Strippers plasma, target, electron, ion 248
 
  • O.S.H. Haas, O. Boine-Frankenheim
    TEMF, TU Darmstadt, Darmstadt, Germany
 
  Funding: This work is supported by the BMBF as part of project 05P15RDRBA.
Charge stripping of intense heavy ion beams is a major challenge in current and future linear heavy ion accelerators. Conventional stripping techniques are limited in their applicability, e.g. solid carbon foils suffer from short lifetimes at high intensities. One possible alternative is the use of a plasma as a stripping medium, which the presented work focuses on. The main goal of the studies is the prediction of the final charge state distribution of the ion beam. Rate equations were implemented numerically, taking into account different models for ionization, recombination and energy loss processes. First quantitative results are presented in form of an overview of the charge state distributions of different charge stripping media. For fixed projectile properties and target phase, it is observed that the mean charge state q0 decreases for increasing nuclear charge Z\text{T} of the target. Plasmas show significantly increased q0 for the same ZT. The width d of the charge state distributions is larger for higher Z\text{T}. The latter is caused by multiple loss of the projectile and decreases the maximum stripping efficiency by typically less than a factor of 2.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-MOPLR051  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUOP03 Developments on the 1.4 MeV/u Pulsed Gas Stripper Cell ion, target, emittance, linac 387
 
  • P. Scharrer, W.A. Barth, Ch.E. Düllmann, J. Khuyagbaatar, A. Yakushev
    HIM, Mainz, Germany
  • W.A. Barth, M. Bevcic, Ch.E. Düllmann, L. Groening, K.P. Horn, E. Jäger, J. Khuyagbaatar, J. Krier, P. Scharrer, A. Yakushev
    GSI, Darmstadt, Germany
  • Ch.E. Düllmann, P. Scharrer
    Mainz University, Mainz, Germany
 
  The GSI UNILAC in combination with SIS18 will serve as a high-current, heavy-ion injector for the FAIR facility. It must meet high demands in terms of beam brilliance at a low duty factor. As part of an UNILAC upgrade program dedicated to FAIR, a new pulsed gas stripper cell was developed, aiming for increased beam intensities inside the post-stripper. The pulsed gas injection is synchronized with the beam pulse timing, enabling a highly-demanded, increased gas density. First tests using uranium beams on a hydrogen target showed a 60%-increased stripping efficiency into the desired 28+ charge state. In 2015, the setup was improved to be able to deliver increased target thicknesses and enhanced flexibility of the gas injection. In recent beam times, the pulsed gas cell was used with various ion-beam types, to test the capabilities for operation at the GSI UNILAC. The stripping of two ion beams in different gases at different gas densities was successfully tested in mixed-beam operation. Charge fractions, beam emittance, and energy-loss were systematically measured using uranium, bismuth, titanium, and argon beams on hydrogen, helium, and nitrogen targets. Selected results will be presented at the conference.  
slides icon Slides TUOP03 [1.131 MB]  
poster icon Poster TUOP03 [5.943 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-TUOP03  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPLR069 Simulation Study on the Beam Loss Mitigation in the 1st Arc Section of FRIB Driver Linac ion, simulation, electron, linac 613
 
  • T. Maruta
    J-PARC, KEK & JAEA, Ibaraki-ken, Japan
  • M. Ikegami, F. Marti
    FRIB, East Lansing, USA
 
  Funding: Work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661.
The Facility of Rare Isotope Beams (FRIB) at Michigan State University is now under construction toward user operation in year 2020. Charge-state transition of accelerating ions occurs in the beam line due to interaction with the residual gas. Since this exchange changes charge to mass ratio of the ions, the ion orbit is distorted especially in an arc section with the ion potentially hitting the vacuum pipe. This will generate outgassing from the beamline pipe. Moreover, they become a seed of further charge-state exchanges. Therefore, a collimation of charge exchanged ions is necessary to prevent this feedback cycle. In this presentation, the results of a simulation study on charge exchange reaction in the 1st arc section of FRIB and optimization of collimator position are presented.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-TUPLR069  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUP106001 Magnetic Field Measurements in a Cryomodule with Nearby Warm-Section Quadrupole Magnets of RAON Heavy Ion Accelerator cryomodule, shielding, cavity, ion 625
 
  • H.J. Cha, J.W. Choi, I. Chun, M. Lee
    IBS, Daejeon, Republic of Korea
 
  For the Korean heavy ion accelerator RAON, a normal-conducting quadrupole magnet doublet with an intermediate beam diagnostic devices between two cryomodules is served for collimating the heavy ion beam. Although the fringe field of a magnet at a superconducting cavity position is low enough, differently from a strong superconducting solenoid, it can degrade the acceleration performance in the case of quench of the cavity directly and/or indirectly by contaminating the cryomodule wall and magnetic shields. In this study, we analyze the magnetic measurement results in the cryomodule assembled with the magnet doublet compared to the calculated ones and discuss the future plan.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-TUP106001  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUP106024 Optimizing Cavity Choice for FRIB Energy Upgrade Plan cavity, ion, linac, cryomodule 637
 
  • S. Shanab, K. Saito, Y. Yamazaki
    FRIB, East Lansing, USA
 
  Isotope production yield rate is directly proportional to beam power, especially for heavy ions. Higher beam kinetic energy on target drives more isotope yield. FRIB has an energy upgrade plan up to ≥ 400 MeV/u for Uranium and already prepared a vacant space in the design stage and cryogenic capacity that accommodates for the energy upgrade plan[1]. This upgrade requires an optimized linac design and challenging technology for cavity performance improvement. In this paper, we will approach this issue concerning; maximizing final energy, optimum beta, cavity operating frequency, cryogenic power, fabrication and cost in order to develop a cavity that is suitable for the energy upgrade plan.  
poster icon Poster TUP106024 [1.343 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-TUP106024  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPLR029 Update on the SC 325 MHz CH-Cavity and Power Coupler Processing cavity, linac, ion, SRF 913
 
  • M. Busch, M. Amberg, M. Basten, F.D. Dziuba, P.A. Mundine, H. Podlech, U. Ratzinger
    IAP, Frankfurt am Main, Germany
 
  Funding: Work supported by GSI, BMBF Contr. No. 05P15RFRBA
The 325 MHz CH-Cavity which has been developed and successfully vertically tested at the Institute for Applied Physics, Frankfurt, has reached the final production stage. The helium vessel has been welded to the frontal joints of the cavity and further tests in a horizontal environment are in preparation. Furthermore the corresponding power couplers have been conditioned and tested at a dedicated test stand up to the power level of 40 kW (pulsed) for the targeted beam operation. The final step of the whole prototype development is a beam test with a 11.4 AMeV, 10 mA ion beam at GSI, Darmstadt.
 
poster icon Poster THPLR029 [1.858 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-THPLR029  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPLR033 R&D Status of the New Superconducting CW Heavy Ion LINAC@GSI cavity, linac, ion, pick-up 923
 
  • M. Basten, M. Amberg, M. Busch, F.D. Dziuba, H. Podlech, M. Schwarz
    IAP, Frankfurt am Main, Germany
  • W.A. Barth, V. Gettmann, S. Mickat, M. Miski-Oglu
    HIM, Mainz, Germany
  • M. Heilmann, S. Mickat, S. Yaramyshev
    GSI, Darmstadt, Germany
 
  For future research in the field of Super Heavy Elements (SHE) a superconducting (sc) continuous wave (cw) ion LINAC with high intensity is highly desirable. Presently a multi-stage R&D program conducted by GSI, HIM and IAP[*] is in progress. The fundamental linac design composes a high performance ion source, a new low energy beam transport line, the High Charge State Injector (HLI) upgraded for cw, and a matching line (1.4 MeV/u) followed by the new sc-DTL LINAC for acceleration up to 7.3 MeV/u. The successful commissioning of the first Crossbar-H-mode (CH) cavity (Demonstrator), in a vertical cryo module, was a major milestone in 2015[**]. The next stage of the new sc cw heavy ion LINAC is the advanced demonstrator comprising a string of cavities and focusing elements build from several short constant-beta sc CH-cavities operated at 217MHz. Currently the first two sc 8 gap CH-cavities are under construction at Research Instruments (RI), Bergisch Gladbach, Germany. The new design without girders and with stiffening brackets at the front and end cap potentially reduces the overall technical risks during the construction phase and the pressure sensitivity of the cavity. The recent status of the construction phase as well as an outlook for further cavity development of the new cw heavy ion LINAC will be presented.
*W.Barth et al.,Further R&D for a new Superconducting cw Heavy Ion LINAC@GSI, IPAC14, THPME004
**F.Dziuba et al.,First Performance Test on the Superconducting 217 MHz CH Cavity at 4K,LINAC16, THPLR033
 
poster icon Poster THPLR033 [2.502 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-THPLR033  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPLR045 Operation Mode and Machine State Control for FRIB Driver Linac Operation operation, linac, ion, controls 956
 
  • M. Ikegami, D. Dudley, M.G. Konrad, Z. Li, G. Shen, V. Vuppala
    FRIB, East Lansing, USA
 
  Funding: Work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661
FRIB is a heavy ion linac facility to accelerate all stable ions up to 200 MeV/u with the beam power of 400 kW under construction at Michigan State University. It is required for FRIB driver linac to support various modes of operation with different ion species, charge states, beam energy and so on to meet requirements from experiments. In this paper, we describe overall design of operation modes, machine states, and software to manage transitions of those mitigating the risk of machine damage in FRIB.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-THPLR045  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPLR061 Research on a Two-beam Type Drift Tube Linac ion, DTL, cavity, acceleration 989
 
  • L. Lu, C.X. Li, W. Ma, L.B. Shi, L.P. Sun, X.B. Xu, H.W. Zhao
    IMP/CAS, Lanzhou, People's Republic of China
  • T.L. He
    USTC/NSRL, Hefei, Anhui, People's Republic of China
  • L. Yang
    USTC, Hefei, Anhui, People's Republic of China
 
  The very high intense heavy-ion beam is a high attraction for heavy ion researches and heavy-ion applications, but it is limited by heavy-ion production of ion source and space-charge-effect in acceleration. There is one way, accelerating several heavy-ion beams in one cavity at same time and funneling them, which could achieve the acceleration of very high intense heavy-ion beam with existing ion source and accelerating technology. In this paper, we will introduce our designs, calculations and simulations of a 2-beam type drift tube linac.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-THPLR061  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPLR064 Design and Simulation of a High Intensity Heavy Ion RFQ Accelerator Injector rfq, dipole, simulation, ion 999
 
  • W. Ma, Y. He, C.X. Li, L. Lu, L.B. Shi, L.P. Sun, X.B. Xu, Z.L. Zhang, H.W. Zhao
    IMP/CAS, Lanzhou, People's Republic of China
 
  An 81.25 MHz continuous wave (CW) radio frequency quadrupole (RFQ) accelerator has been developed for Low Energy Accelerator Facility (LEAF) at the Institute of Modern Physics (IMP), the Chinese Academy of Science (CAS). In the CW operating mode, the proposed RFQ design adopted the conventional four-vane structure. The main design goals are providing the high shunt impendence with low power losses. In the electromagnetic (EM) design, the π-mode stabilizing loops (PISLs) were optimized to produce a good mode separation. The tuners were also designed and optimized to tune frequency and field flatness of the operating mode. The vane undercuts were optimized to provide a flat field along the RFQ cavity. Additionally, a full length model with modulations was set up for the final EM simulations. In this paper, detailed EM design of the LEAF-RFQ will be presented and discussed. Meanwhile, structure error analysis is also studied.  
poster icon Poster THPLR064 [3.021 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-THPLR064  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)