Keyword: ion
Paper Title Other Keywords Page
MOPP010 Low Charge State Laser Ion Source for the EBIS Injector injection, laser, target, electron 64
 
  • M. Okamura, J.G. Alessi, E.N. Beebe, T. Kanesue, C.J. Liaw, V. LoDestro, A.I. Pikin, D. Raparia, J. Ritter
    BNL, Upton, Long Island, New York, USA
  • Y. Fuwa, S. Ikeda, M. Kumaki
    RIKEN, Saitama, Japan
 
  Funding: NASA
In March 2014, we have successfully commissioned a newly designed low charge high brightness laser ion source (LIS) which delivers various singly charged heavy ions to the electron beam ion source (EBIS) at Brookhaven National Laboratory. Now the LIS is used at routine operation of the RHIC-AGS accelerator complex and is providing stable less-contaminated beams. The laser power density was optimized to provide singly charged ions with low material consumption rate. The nominal laser energy on the target is around 500 mJ with 1064 nm Nd:YAG of the wave length. The induced plasma by the laser is transported through a 3 m pipe to stretch ion beam pulse length to match the EBIS’s requirement and the degradation of the beam current caused by the long drift section of the pipe can be compensated by a longitudinal magnetic filed induced by a coil surrounding the pipe. We also employed a twin laser system to extend the beam width further. At the conference, we will discuss the effect of the new LIS on the various accelerated beams through the EBIS, RFQ and IH-linac.
 
 
MOPP011 Reliability and Intensity Upgrade for 200 MeV Linac at Brookhaven National Laboratory linac, detector, operation, target 67
 
  • D. Raparia, J.G. Alessi, B. Briscoe, D.M. Gassner, O. Gould, T. Lehn, V. Lo Destro, J. Ritter, W. Shaffer, A. Zelenski
    BNL, Upton, Long Island, New York, USA
 
  Brookhaven 200 MeV H linac has been operating for last 44 years and providing beam to nuclear physics program and isotope program. Two upgrade programs are in progress to make machine more reliable and to double the intensity. This paper will discuss in detail these upgrade programs.  
 
MOPP019 Nb3Sn Materials Studies niobium, SRF, cavity, electron 92
 
  • S. Posen, M. Liepe
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • Th. Proslier
    ANL, Argonne, Illinois, USA
 
  Nb3Sn is a very promising material for use in SRF cavity applications, potentially offering significant improvements in quality factor and energy gradient compared to niobium. In order to better understand how to optimize this material for SRF applications, Nb3Sn samples were prepared at Cornell via vapor deposition, using varying parameters in the coating process. Microscopic studies were performed with SEM/EDX, and studies were performed on bulk samples to measure secondary electron yield, energy gap, and upper critical magnetic field. The results are presented here, with discussion for how they might point the way towards reaching even higher fields in Nb3Sn cavities.  
poster icon Poster MOPP019 [2.742 MB]  
 
MOPP041 Commissioning Plan for the FRIB Driver Linac* linac, radiation, cryomodule, operation 152
 
  • M. Ikegami, L.T. Hoff, S.M. Lidia, F. Marti, G. Pozdeyev, T. Russo, R.C. Webber, J. Wei, Y. Yamazaki
    FRIB, East Lansing, Michigan, USA
 
  Funding: * Work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661.
The FRIB driver linac accelerates CW beams of all stable ions up to uranium to the energy of 200 MeV/u with the beam power of 400 kW. We plan to start staged beam commissioning in December 2017 in parallel with ongoing installation activities. This allows early recognition of technical issues, which is essential for smooth commissioning and early completion of commissioning goals. As the interlaced nature of commissioning and installation poses both scheduling challenges and special safety issues, it is essential to develop a commissioning plan with focused consideration of each. In this paper, we present a commissioning plan with emphasis on its characteristic features.
 
 
MOPP050 Transmission Efficiency Measurement at the FNAL 4-rod RFQ rfq, solenoid, space-charge, simulation 168
 
  • J.-P. Carneiro, F.G. Garcia, J.-F. Ostiguy, A. Saini, R.M. Zwaska
    Fermilab, Batavia, Illinois, USA
  • B. Mustapha, P.N. Ostroumov
    ANL, Argonne, Illinois, USA
 
  This paper presents measurements of the beam transmission performed on the 4-rods RFQ currently under operation at Fermilab. The beam current has been measured at the RFQ exit as a function of the magnetic field strength in the 2 LEBT solenoids. This measurement is compared with a scan performed on the Fermi Grid with the beam dynamics code TRACK. A particular attention is given to the impact, on the RFQ beam transmission, of the space-charge neutralization in the LEBT and of the field asymmetry on the 4-rods RFQ.  
 
MOPP060 Status of the GSI Poststripper - HE-Linac DTL, rfq, linac, simulation 190
 
  • S. Mickat, W.A. Barth, G. Clemente, X. Du, L. Groening, A. Orzhekhovskaya, B. Schlitt, H. Vormann, C. Xiao, S.G. Yaramyshev
    GSI, Darmstadt, Germany
  • M. Droba, H. Hähnel, U. Ratzinger, R. Tiede
    IAP, Frankfurt am Main, Germany
 
  The High-Energy (HE) Linac is proposed to substitute the existing UNILAC post-stripper section. The post-stripper is an Alvarez DTL, which is in operation over four decades successfully. A quasi Front-to-End simulation along the UNILAC shows, that by taking future upgrade options into account already, with the existing Alvarez section the Fair requirements are not reached. Even by substituting the Alvarez section by the HE Linac the aim is not reached per se regarding the existing boundary conditions. Currently workpackages are defined together with the Institute of Applied Physics at Frankfurt University. Starting from the Ion sources to the SIS18 transfer channel every section is reinvestigated for improvements in beam quality and intensity.  
 
MOPP061 First RF Measurements of the Superconducting 217 MHz CH Cavity for the CW Demonstrator at GSI cavity, simulation, linac, status 193
 
  • F.D. Dziuba, M. Amberg, M. Basten, M. Busch, H. Podlech, U. Ratzinger
    IAP, Frankfurt am Main, Germany
  • M. Amberg, K. Aulenbacher, W.A. Barth, S. Mickat
    HIM, Mainz, Germany
  • K. Aulenbacher
    IKP, Mainz, Germany
  • W.A. Barth, S. Mickat
    GSI, Darmstadt, Germany
 
  Funding: Work supported by GSI, HIM, BMBF Contr. No. 05P12RFRBL
Presently, a superconducting (sc) 217 MHz Crossbar-Hmode (CH) cavity is under construction at Research Instruments (RI), Bergisch Gladbach, Germany. Among the horizontal cryomodule and two sc 9.5 T solenoids the cavity is the key component of the cw demonstrator at GSI. To show the operation ability of sc CH cavity technology under a realistic linear accelerator environment is one major goal of the demonstrator project. A successful beam operation of the demonstrator will be a milestone regarding the continuing advanced sc cw linac project at GSI for a competitive production of Super Heavy Elements (SHE) in the future. The fabrication status as well as first rf measurements at room temperature of the 217 MHz CH cavity are presented.
 
poster icon Poster MOPP061 [1.741 MB]  
 
MOPP063 Development of a Pepper Pot Emittance Measurement Device for FRANZ emittance, ion-source, plasma, proton 199
 
  • B. Klump, U. Ratzinger, W. Schweizer, K. Volk
    IAP, Frankfurt am Main, Germany
 
  Funding: This work is supported by HGS-HIRe
Within the FRANZ project [*] on the Institute of Applied Physics, University Frankfurt, a robust and simple pepper pot emittance measurement device for high beam power densities is developed. To use the device directly behind the ion source, a high robustness against HV breakdowns is necessary. This paper gives an overview on experimental setup, on the analysis method and on imaging properties of the screen. Furthermore, the implemented software-based evaluation method is shown. It concludes with a preliminary emittance measurement on the high current ion source for FRANZ.
[*] U. Ratzinger et al., “intense Pulsed Neutron Source FRANZ in the 1-500 keV Range“, Proc. ICANS-XVIII, Dongguan, April 2007, p.210
 
 
MOPP065 Investigations of Space-Charge Compensation in Low-Energy Beam Transport (LEBT) Sections Using a Particle-in-Cell Code electron, simulation, proton, space-charge 205
 
  • D. Noll, M. Droba, O. Meusel, U. Ratzinger, K. Schulte, C. Wiesner
    IAP, Frankfurt am Main, Germany
 
  Among the advantages of magnetostatic LEBT sections is the possibility for compensation of space charge by electrons in the case of positively charged ion beams. In the past, it has been shown that the distribution of these compensation electrons can lead to unwanted emittance growth. However, the distribution of electrons especially in the presence of the magnetic fields of the focussing lenses is difficult to predict. To improve the understanding of the influence on the beam, models for the relevant processes namely residual gas ionization using realistic cross sections as well as secondary electron production on surfaces have been implemented in a particle-in-cell code. In this contribution, we will present the code used as well as first results for two model systems as an example.  
 
MOPP066 High Gradient CH-Type Cavity Development for 10 – 100 AMeV Beams cavity, linac, quadrupole, heavy-ion 208
 
  • A. Almomani, U. Ratzinger
    IAP, Frankfurt am Main, Germany
 
  Funding: This work is supported by Federal Ministry of Education and Research - BMBF No. 05P12RFRB9.
The development in pulsed linac activities aims on compact designs and on an increase of the voltage gain per meter. At IAP - Frankfurt, a CH design was developed for these studies, where the mean effective accelerating field is expected to reach well above 10 MV/m at 325 MHz, β=0.164. Within a funded project, this cavity is systematically developed. Currently, the cavity is under construction at NTG GmbH and expected to be ready for copper plating in autumn 2014. The results should give an impact on the rebuilt of the UNILAC - Alvarez section, optimized for achieving the beam intensities specified for the GSI – FAIR project. A mid- and long- term aim is a compact pulsed high current linac. The new GSI 3 MW Thales klystron test stand will be very important for these investigations. Detailed studies on two different types of copper plating can be performed on this cavity. Additionally, operating of normal conducting cavities at cryogenic temperatures will be discussed. In this work, the cavity status will be presented.
 
 
MOPP067 Operation of the LINAC and the LINAC RF System for the Ion-Beam Therapy Center Heidelberg linac, operation, DTL, rfq 211
 
  • E. Feldmeier, R. Cee, Th. Haberer
    HIT, Heidelberg, Germany
 
  The Heidelberg Ion Therapy Center HIT is in clinical operation since 2009. It is the first dedicated european particle accelerator for medical treatment. Its central location on the campus of the Heidelberg University Hospital fits perfectly in the clinical everyday life. The accelerator complex consists of a linear accelerator and a synchrotron and is designed for protons and carbon ions, but can also provide helium and oxygen ions. The LINAC, build in 2006, operates since 5 years in a 24/7 schema which leads to 60000 operating hours up to now. The performance with an availibility of better than 99% is much higher than expected and is caused by a solid design and a well planned and foresighted maintenance. Unavoidable failures during operation can be solved very fast with the on site experts for each section. The combination of personnel spare parts and permanent ongoing developments is very successful. An upgrade program for parts of the linac and also for the RF system is in planning to keep the uptime high and to improve the performance for further needs.  
 
MOPP080 Beam Dynamics Study for RAON Superconducting Linac linac, lattice, proton, quadrupole 239
 
  • H. Jang, H.J. Kim
    IBS, Daejeon, Republic of Korea
  • J.G. Hwang
    KNU, Deagu, Republic of Korea
  • B.H. Oh
    POSTECH, Pohang, Kyungbuk, Republic of Korea
 
  Rare Isotope Science Project (RISP) in Korea is going to build an ion accelerator, RAON which can generate and accelerate various stable ions such as uranium, proton, xenon and rare isotopes such as tin, nickel. Linear accelerators of RAON adopted superconducting RF cavities and warm quadruple doublet structure. In RAON, there are two low energy linacs which can accelerate the Uranium beam from 0.5MeV/u to 17.5MeV/u, charge stripping sections and one high energy linac which can accelerate the Uranium beam up to 200MeV/u. Due to the diversity of planned ions and isotopes, their A/q range lies widely from 1 to 8. As a result, the research related with linac lattice design and beam dynamics is one of the important topics to build RAON. In this presentation the current status of RAON linac lattice design and the beam dynamics simulation results for acceleration of various ions will be described.  
 
MOPP082 Superconducting Linac for RISP linac, cavity, cryomodule, quadrupole 245
 
  • H.J. Kim, H.J. Cha, M.O. Hyun, H.C. Jung, Y.J.K. Kim, M. Lee
    IBS, Daejeon, Republic of Korea
 
  The RISP (Rare Isotope Science Project) has been proposed as a multi-purpose accelerator facility for providing beams of exotic rare isotopes of various energies. It can deliver ions from proton to Uranium. Proton and Uranium beams are accelerated upto 600 MeV and 200 MeV/u respectively. The facility consists of three superconducting linacs of which superconducting cavities are independently phased. Requirement of the linac design is especially high for acceleration of multiple charge beams. In this paper, we present the RISP linac design, the prototyping of superconducting cavity and cryomodule.  
 
MOPP086 Ecr Ion Sources Developments at INFN-LNS for the Production of High Brightness Highly Charged Ion Beams plasma, electron, ion-source, ECRIS 254
 
  • D. Mascali, C. Altana, L. Andò, C. Caliri, G. Castro, L. Celona, S. Gammino, L. Neri, F.P. Romano, G. Torrisi
    INFN/LNS, Catania, Italy
  • G. Sorbello
    University of Catania, Catania, Italy
 
  The design of future high-performing ECRIS will require alternative approaches in microwave-to-plasma coupling, in order to maximize the electron density at relatively low frequency and reduce the super-hot electrons formation and their consequences on the beam stability and on source reliability. On these purposes, different activities have been carried out at INFN-LNS in the recent past, including advanced modelling, diagnostics, and studies about alternative methods of plasma heating based on electrostatic-waves generation. A description of these activities will be presented, with special emphasis to the microwave to plasma coupling and to the plasma diagnostics. Some of the already collected results have been a basis for the design of the new AISHa source (for hadrontherapy purposes) and the construction of the innovative prototype named Flexible Plasma Trap: on this machine we will search for advanced schemes of microwave launching, now ongoing thanks to full-wave plus kinetic calculations of the wave-to-plasma interaction mechanism  
 
MOPP090 Adjustment of the Coupling Factor of the Input Coupler of the ACS Linac by a Capacitive Iris in J-PARC cavity, coupling, simulation, linac 264
 
  • J. Tamura, H. Ao, K. Hirano, Y. Nemoto, N. Ouchi
    JAEA/J-PARC, Tokai-mura, Japan
  • H. Asano
    Nippon Advanced Technology Co. Ltd., Ibaraki-prefecture, Japan
  • F. Naito, K. Takata
    KEK, Ibaraki, Japan
 
  Annular-ring Coupled Structure (ACS) cavities have been installed to increase the beam energy of the Japan Proton Accelerator Research Complex (J-PARC) linac from 181 to 400 MeV in the maintenance period of 2013. Some of the pillbox type input couplers with a ceramic window to the ACS cavity have a larger coupling factor than the target value by an avoidable manufacturing error. To adjust the coupling factor, a capacitive iris was introduced in the rectangular waveguide near the coupler. As a result, it has been confirmed that the iris decreases the coupling factor to a target value without any significant increase in temperature and in a discharge rate during high-power operation. In this paper, the design procedure of the capacitive iris and the result of the coupling factor adjustment are presented.  
 
MOPP101 Design of the 4MeV RFQ for the Helium Beam Irradiatior rfq, controls, ion-source, cavity 294
 
  • H.-J. Kwon, Y.-S. Cho, H.S. Kim, K.T. Seol, Y.-G. Song
    KAERI, Daejon, Republic of Korea
 
  Funding: This work was supported by the Ministry of Science, ICT & Future Planning of the Korean Government.
A RFQ is considered as a main accelerator of the helium beam irradiation system for the power semiconductor in Korea Multipurpose Accelerator Complex (KOMAC). The RFQ was designed to accelerate the He2+ beam up 4MeV with 10mA peak beam current. We chose a vane type RFQ with 200MHz operating frequency. The RFQ will be operated with the frequency tracking mode supplied by the digital low level rf control system. In this paper, the design of the 4MeV RFQ is presented and the beam irradiation system including rf system, control system, utility system, is discussed.
 
 
MOPP109 Ion Beam Acceleration in Neutron Tube target, electron, neutron, space-charge 310
 
  • V.I. Rashchikov
    MEPhI, Moscow, Russia
  • A.S. Plastun
    ITEP, Moscow, Russia
 
  Deuteron beam acceleration in ion-optic system of gas-filled neutron tubes was investigated. PIC code SUMA "*" used for computer simulation of ionization and knock on processes and there influence on deuteron beam parameters. When deuteron and ionized particles own space charge forces become the same order of magnitude as external one, virtual cathode may occurs. It is happened because of injected from ion source deuterons cannot overcome their own space charge potential wall and move in transverse direction. However, electrons, produced by ionization, are trapped within the deuteron beam space charge potential wall and decrease it significantly. Thus, space charge neutralization of deuteron beams by electrons, may considerably increase target current and, as a result, output neutron flow. Moreover, own longitudinal electric field rise near the target leads to reduction of accelerating electrode – target potential wall, which was made to prevent knock on emission from the target. As a result, additional knocked on electrons may appear in the region and should be taken into account. The data obtained were compared with experimental results.
* A.N. Didenko, V.I. Rashchikov, V.E. Fortov, Technical Physics, Vol. 56, No. 10,pp. 1535–1538, 2011
 
 
MOPP112 Beam Dynamics of Multi Charge State Ions in RFQ Linac rfq, laser, acceleration, ion-source 317
 
  • Y. Fuwa, S. Ikeda, M. Kumaki
    RIKEN, Saitama, Japan
  • Y. Fuwa, Y. Iwashita
    Kyoto ICR, Uji, Kyoto, Japan
  • T. Kanesue, M. Okamura
    BNL, Upton, Long Island, New York, USA
 
  Laser ion source with DPIS (Direct Plasma Injection Scheme) is a promising candidate for a pre-injector of the high-intensity accelerator. Eliminating LEBT (Low Energy Beam Transport) where the space charge effect is severe, DPIS provides high current ion beam from laser plasma at the entrance of a RFQ linac and ion beams are injected directly into the RFQ linac. However, the injected beam consists of multi charge state ions and their behavior in RFQ linac has not been well understood. In this research, we study the beam dynamics of multi charge state ions in a RFQ. Using the result of computer simulation, a set of 100MHz 4-rod RFQ vanes, which accelerates Al 12+ ion among various charge states of aluminum ions from 8.9 keV/u to 200 keV/u, is newly designed and fabricated to be tested with beams. The result of beam acceleration test using the vane will be reported.  
 
MOPP122 Construction of the New Amplifiers for the RIKEN-LINAC impedance, heavy-ion, cathode, controls 339
 
  • K. Suda, E. Ikezawa, O. Kamigaito, N. Sakamoto, K. Yamada
    RIKEN Nishina Center, Wako, Japan
  • Y. Touchi
    SHI, Tokyo, Japan
 
  New tetrode based amplifiers have been constructed for the RIKEN heavy-ion linac, so called RILAC[1], replacing 36-year-old amplifiers to improve their reliability as a main injector for the RIBF accelerator complex. The RILAC is a DC machine and their frequency are tunable between 18 to 40 MHz so as to be capable of accelerating heavy ions with mass-to-charge (m/q) ratios up to 28. The new rf amplifier is based on a tetrode THALES/SIEMENS RS2042SK coupled with a tetrode THALES/SIEMENS RS2012CJ with a grounded grid circuit. The maximum output power is 100 kW with a frequency ranging from 18 to 40 MHz. The amplifier was originally designed for RIKEN Ring Cyclotron. Since we have many experiences with this type of amplifier, some modification to avoid exciting the parasitic modes which might damage the cavity and/or the amplifier itself. Their construction started in April 2013 and installation was performed in January 2014. After the installation their commissioning has been successfully made. For a beam service started in this March the new amplifiers were operated without any troubles. [1]M. Odera et al., Nucl. Instrum. and Methods, 227, 187(1984).  
poster icon Poster MOPP122 [16.391 MB]  
 
MOPP124 Development of a 3 MeV Prototype RFQ Structure for High Intensity Proton Linac for ISNS rfq, vacuum, operation, proton 345
 
  • S.C. Joshi, A. Chaturvedi, S.K. Chauhan, K.K. Das, G.V. Kane, S.V. Kokil, B. Oraon, S. Raghvendra, N.K. Sharma
    RRCAT, Indore (M.P.), India
 
  Raja Ramanna Centre for Advanced Technology (RRCAT) has taken up a program on R&D activities of a 1 GeV, high intensity superconducting proton linac for a spallation neutron source. A 3 MeV Radio Frequency Quadrupole (RFQ) will be used as front end of the pulsed proton linac. A full scale prototype RFQ structure has been designed and fabricated to validate the physics design and manufacturing procedures. The total of 3.46 meter has been divided in three segments for ease in machining. The fabricated RFQ structure has been assembled for low power RF characterization. The RFQ frequency and field tuning exercise is being carried out using 48 stub tuners. The paper will also present the engineering design aspects and fabrication issues for the full scale RFQ structure.  
 
MOPP129 Status of the FETS Project rfq, proton, emittance, ion-source 361
 
  • A.P. Letchford, M.A. Clarke-Gayther, D.C. Faircloth, S.R. Lawrie
    STFC/RAL/ISIS, Chilton, Didcot, Oxon, United Kingdom
  • S.M.H. Alsari, M. Aslaninejad, J.K. Pozimski, P. Savage
    Imperial College of Science and Technology, Department of Physics, London, United Kingdom
  • J.J. Back
    University of Warwick, Coventry, United Kingdom
  • G.E. Boorman, A. Bosco, S.M. Gibson
    Royal Holloway, University of London, Surrey, United Kingdom
  • R.T.P. D'Arcy, S. Jolly
    UCL, London, United Kingdom
  • M. Dudman, J.K. Pozimski
    STFC/RAL, Chilton, Didcot, Oxon, United Kingdom
  • D.C. Plostinar
    STFC/RAL/ASTeC, Chilton, Didcot, Oxon, United Kingdom
 
  The Front End Test Stand (FETS) under construction at RAL is a demonstrator for front end systems of a future high power proton linac. Possible applications include a linac upgrade for the ISIS spallation neutron source, new future neutron sources, accelerator driven sub-critical systems, high energy physics proton drivers etc. Designed to deliver a 60mA H-minus beam at 3MeV with a 10% duty factor, FETS consists of a high brightness ion source, magnetic low energy beam transport (LEBT), 4-vane 324MHz radio frequency quadrupole, medium energy beam transport (MEBT) containing a high speed beam chopper and non-destructive laser diagnostics. This paper describes the current status of the project and future plans.  
 
MOPP137 Design Progress of the MYRRHA Low Energy Beam Line rfq, emittance, solenoid, proton 381
 
  • R. Salemme, L. Medeiros Romão, D. Vandeplassche
    Studiecentrum voor Kernenergie - Centre d'Étude de l'énergie Nucléaire (SCK•CEN), Mol, Belgium
  • M.A. Baylac, D. Bondoux, F. Bouly, J.-M. De Conto, E. Froidefond
    LPSC, Grenoble Cedex, France
  • J.-L. Biarrotte
    IPN, Orsay, France
  • D. Uriot
    CEA/DSM/IRFU, France
 
  The MYRRHA project, a flexible spectrum neutron irradiation facility, is designed according to the Accelerator Driven System (ADS) reactor concept. The MYRRHA driver consists of a high power superconducting proton LINAC. A prototype of the front end injector is being built up into a test platform conceived to experimentally address its design issues. Currently, the ECR proton source has been industrially procured. LPSC Grenoble designed the subsequent Low Energy Beam Transport (LEBT) section. Right before the RFQ, a short section hosts an electrostatic beam chopper producing carefully controlled beam interruptions. In this paper the status of the LEBT design with the associated beam instrumentation is reviewed. Future experimental plans including LEBT beam characterization and optimization of the beam transmission are presented.  
 
TUIOB04 DTL Construction Status of CSNS Project DTL, vacuum, linac, neutron 423
 
  • H.C. Liu, S. Fu, J. Peng, S. Wang
    IHEP, Beijing, People's Republic of China
 
  Linac of Chinese Spallation Neutron Source (CSNS) project is under construction. The ion source is tested and good performance of beam current is obtained. The low level RF tuning is underway of the RFQ and assembling of DTL will start soon. Not only the construction of hardware, but some commissioning software packages have been developed and tested.  
slides icon Slides TUIOB04 [4.772 MB]  
 
TUPP002 Commissioning of the 72 MHz Quarter-Wave Cavity Cryomodule at ATLAS cavity, cryomodule, SRF, operation 440
 
  • M.P. Kelly, Z.A. Conway, S.M. Gerbick, M. Hendricks, M. Kedzie, S.H. Kim, S.W.T. MacDonald, R.C. Murphy, P.N. Ostroumov, T. Reid, S.I. Sharamentov, G.P. Zinkann
    ANL, Argonne, Illinois, USA
 
  Funding: This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, under contract number DE-AC02-06CH11357.
A cryomodule of seven 72 MHz SC quarter-wave cavities optimized for ions with v/c=0.077 has been commissioned in the ATLAS heavy-ion accelerator at Argonne. ATLAS has a new capability for increased beam currents with low beam losses for nuclear physics experiments using stable or rare isotope beams or neutron rich beams from the Californium Rare Isotope Breeder. The main goal for the cryomodule, to provide an accelerating voltage of 17.5 MV (2.5 MV/cavity), with no detectable beam losses has been met within the first month of commissioning. Thus far, cavities and primary subsystems including high-power couplers and pneumatic tuners are operating as designed with full availability. For present levels there is practically no field emission (EPEAK=40 MV/m) and RF losses of ~5 Watts/cavity are only half of that planned. Cavity fields will continue to be gradually increased, with the limits due to cavity quench measured at VACC=3.75 MV. Due to a combination of rf design and cavity processing, effective voltages are now 2 ½ times those for any other operational cavities for this v/c. We report here on the recent online test results and technical features of the present design.
 
 
TUPP004 An In-flight Radioactive Ion Separator Design for the ATLAS Facility dipole, quadrupole, target, simulation 446
 
  • B. Mustapha, B. Back, C.R. Hoffman, B.P. Kay, J.A. Nolen, P.N. Ostroumov
    ANL, Argonne, USA
 
  Funding: This work was supported by the U.S. Department of Energy, Office of Nuclear Physics, under Contract No. DE-AC02-06CH11357.
An in-flight radioactive beam separator, named AIRIS, is being designed to enhance the radioactive beam capabilities of the ATLAS facility at Argonne. In order to serve all the experimental areas while maintaining the stable beam capabilities, the separator design is of broadband type. This design allows the selected radioactive beam to come back on the ATLAS beam line while stable beams continue on the same straight line with the separator turned off. The separation is performed in two steps, the first is magnetic in a chicane made of four magnets and four multipoles, while the second uses an rf sweeper taking advantage of the time separation between the beam of interest and potential contaminants including the primary beam tail. We will report on the progress of the AIRIS design effort with special emphasis on the performance of the rf sweeper.
 
 
TUPP005 Completion of Efficiency and Intensity Upgrade of the ATLAS Facility rfq, cryomodule, cavity, solenoid 449
 
  • P.N. Ostroumov, Z.A. Conway, C. Dickerson, S.M. Gerbick, M. Kedzie, M.P. Kelly, S.H. Kim, Y. Luo, S.W.T. MacDonald, R.C. Murphy, B. Mustapha, R.C. Pardo, T. Reid, S.I. Sharamentov, K.W. Shepard, J.R. Specht, G.P. Zinkann
    ANL, Argonne, USA
  • A. Perry
    Illinois Institute of Technology, Chicago, Illlinois, USA
 
  Funding: This work was supported by the U.S. Department of Energy, Office of Nuclear Physics, under Contract No. DE-AC02-06CH11357.
The ANL Physics Division has completed a major upgrade of the ATLAS National User Facility by successfully installing a new RFQ and cryomodule. The new normal conducting CW RFQ capable of providing 295 keV/u beams of any ion with m/q ≤7 from protons to uranium was fully integrated into ATLAS and has been in routine operation for more than a year. The RFQ doubled the efficiency of beam delivery to targets and opened the possibility to accelerate much higher intensity beams. Recently, the new cryomodule containing 7 high-performance 72.75 MHz superconducting quarter-wave resonators and 4 superconducting solenoids was successfully commissioned with beam. New design and fabrication techniques for these resonators resulted in record high voltages which were achieved during the beam commissioning. The new cryomodule provides 17.5 MV accelerating voltage which will be gradually raised by increasing the input RF power and improving LLRF system. The new cryomodule, which replaced 3 old cryomodules that used split-ring cavities, is also essential for high intensity stable beams. Results of beam commissioning and operation of ATLAS with the new RFQ and cryomodule will be presented.
 
 
TUPP036 Space Charge Compensation in the Linac4 LEBT for Three Injected Gas Types emittance, simulation, linac, space-charge 510
 
  • C.A. Valerio, R. Scrivens
    CERN, Geneva, Switzerland
  • N. Chauvin
    CEA/IRFU, Gif-sur-Yvette, France
 
  The space charge of unbunched, high intensity beams can be compensated by the trapping of charged particles in the potential well of the beam. The source of these secondary charge particles can be the residual gas in the beam line. The effect is important in the Low energy beam transport (LEBT) regions. At CERN’s Linac4, the LEBT transports a pulsed 45keV H beam, which is compensated by the positive ions, created by collision of the beam with the neutral gas in the beam pipe. The rise time and amount of compensation may be varied by the density of neutral gas and the type of gas used (through the cross-section for ion production and the mass of the resulting ion). In this paper we present measurement results for the transport of the beam at the Linac4 LEBT with the addition of hydrogen, nitrogen and krypton gases into the line, and compare them with simulations of the beam dynamics including the effect of compensating positive ions . The H beam is provided by a cesiated 2MHz RF ion source with an external solenoidal antenna, operating with 600us pulses at 0.8Hz repetition rate.  
slides icon Slides TUPP036 [4.084 MB]  
poster icon Poster TUPP036 [1.356 MB]  
 
TUPP037 Transverse Emittance Measurements of the REX-ISOLDE Beams in Preparation for the HIE-ISOLDE Commissioning emittance, quadrupole, linac, background 513
 
  • D. Voulot, M.A. Fraser, D. Lanaia
    CERN, Geneva, Switzerland
  • T. Olsson
    MAX-lab, Lund, Sweden
 
  The transverse emittance at the output of the REX-ISOLDE normal conducting linac has been measured at different energies in order to characterise the beam at injection to the future HIE-ISOLDE superconducting linac. The measurements were done with low intensity stable beams (~0.5 enA) in order to avoid compensation effects in the EBIS ion source and obtain representative measurements of the radioactive ion beam emittance. Emittances were measured using a slit-grid emittance meter and compared with results obtained with a quadrupole-scan (three-gradient) method. An analysis of the background suppression is presented and possible source of errors for both type of measurements are discussed.  
poster icon Poster TUPP037 [2.084 MB]  
 
TUPP045 Beam Physics Challenge in FRIB Driver Linac linac, proton, focusing, acceleration 532
 
  • Y. Yamazaki, N.K. Bultman, A. Facco, Z.Q. He, M. Ikegami, M.J. Johnson, S.M. Lidia, F. Marti, G. Pozdeyev, K. Saito, J. Wei, X. Wu, Y. Zhang, Q. Zhao
    FRIB, East Lansing, Michigan, USA
 
  Funding: *Work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661.
The Facility for Rare Isotope Beams driver linac provides CW beams of all the stable ions (from protons to uranium) with a beam power of 400 kW and a minimum beam energy of 200 MeV/u in order to produce a wide variety of rare isotopes, mainly for nuclear physics study. The low beam emittances, both transverse and longitudinal, are key performance requirements, together with beam stability. These are required for efficiently separating one isotope from another, the reason for choosing this linac configuration. Multi-charge states (five charge states for the uranium case) are accelerated for maximizing the beam current, while keeping the low emittances. The efficient acceleration of high beam currents from 0.5 MeV/u through the superconducting linac is, needless to say, one of the biggest challenges. The beam power is more than 200 times higher than existing similar SC heavy ion linac. In particular, the SC cavities are difficult to protect from heavy ion beam damage, which can be 30 times larger locally than a proton beam with the same beam power. Other challenges peculiar to the FRIB linac will be presented, together with the solutions.
 
 
TUPP056 High Current Proton Beam Operation at GSI UNILAC proton, linac, operation, ion-source 550
 
  • W.A. Barth, A. Adonin, P. Gerhard, M. Heilmann, R. Hollinger, W. Vinzenz, H. Vormann
    GSI, Darmstadt, Germany
 
  A significant part of the experimental program at FAIR is dedicated to pbar physics requiring a high number of cooled pbars per hour. The primary proton beam has to be provided by a 70 MeV proton linac followed by two synchrotrons. The new FAIR Proton LINAC will deliver a pulsed proton beam of up to 35 mA of 36 μs duration at a repetition rate of 4 Hz. The current GSI heavy ion linac (UNILAC) is able to deliver world record uranium beam intensities for injection into the synchrotrons, but it is not dedicated for FAIR relevant proton beam operation. In an advanced machine investigation program it could be shown, that the UNILAC is able to provide for sufficient high intensities of CH3-beam, cracked (and stripped) in a supersonic nitrogen gas jet into protons and carbon ions. This advanced operational approach results in up to 2 mA of proton intensity at a maximum beam energy of 20 MeV, 100 μs pulse duration and a rep. rate of 4 Hz. Recent linac beam measurements will be presented, showing that the UNILAC is able to serve as a proton FAIR injector for the first time, while the performance is limited to 17% of the FAIR requirements.  
 
TUPP058 RF System Development for the New 108 MHz Heavy Ion High-Energy Linac at GSI linac, controls, operation, LLRF 556
 
  • B. Schlitt, M. Hoerr, A. Schnase, G. Schreiber, W. Vinzenz
    GSI, Darmstadt, Germany
 
  The GSI UNILAC is in operation successfully since about 40 years. A replacement of the post stripper section is proposed to provide heavy ion beams for the future FAIR facility. Design studies for a new 108 MHz high-energy (HE) linac optimized to accelerate high brilliance and high current ion beams up to U28+ for synchrotron injection are in progress. Thus, the UNILAC will be converted into a short-pulse accelerator, the RF duty cycle being reduced from around 30 % to <2 %. To feed the future HE linac and to prepare for the FAIR commissioning, a major modernisation of the existing post stripper RF systems is planned from 2015 to 2017. Besides, the development of a new 1.8 MW cavity amplifier prototype was started recently, based on the widely-used THALES tetrode TH558SC promising an availability for at least 25 years. New 120 - 150 kW solid state driver amplifiers will replace the existing tube drivers. A digital LLRF system designed by industry was integrated into an existing amplifier driving a single gap resonator and was tested including ion beam tests. An overview of the RF system design and of the planned upgrades will be reported including some results of the LLRF tests.  
 
TUPP059 Advanced Beam Matching to a High Current RFQ rfq, quadrupole, simulation, emittance 559
 
  • S.G. Yaramyshev, W.A. Barth, L.A. Dahl, P. Gerhard, L. Groening, M.T. Maier, S. Mickat, A. Orzhekhovskaya, B. Schlitt, H. Vormann
    GSI, Darmstadt, Germany
 
  The High Current Injector (HSI) of the heavy ion linac UNILAC at GSI comprises the transport lines, the RFQ and two DTL tanks. Beam matching to the RFQ acceptance with a magnetic quadrupole quartet has been worked out manually during commissioning and operation of the machine. Due to a strong overlapping of the field from neighboring quadrupole lenses, a standard optics calculation does not provide for the required reliability. Advanced beam dynamics simulations have been done with the macroparticle code DYNAMION. The superposition of the measured magnetic fields of each quadrupole was taken into account. The quadrupole settings were optimized using the Monte-Carlo method. Two solutions have been found in accordance with the general theory of particle optics. Beam dynamics simulations with new quadrupole settings show an increased particle transmission through the RFQ. The results of numerical study have been confirmed during experimental campaigns. An improved performance of the whole HSI has been demonstrated. The proposed algorithm and a comparison of the measured data with result of simulations are presented.  
 
TUPP090 Spatially Periodic RF Quadrupole LINAC quadrupole, focusing, linac, lattice 634
 
  • A.S. Plastun, A. Kolomiets
    ITEP, Moscow, Russia
 
  Spatially-periodic RF quadrupole structure is proposed as second section of front end of ion linac. It consists of conventional drift tubes and RF quadrupoles. Quadrupoles are 4-vane segments with nonzero electric potential on the longitudinal axis. Thus the accelerating electric field is formed between drift tubes and RF quadrupoles. Moreover accelerating field can be provided even inside the RF quadrupoles. It allows building structures with different focusing lattices and provides high energy gain rate.  
poster icon Poster TUPP090 [7.706 MB]  
 
TUPP092 Developmental and Operational Aspects of Nb QWR Based Heavy Ion LINAC System at IUAC Delhi linac, controls, operation, niobium 640
 
  • S. Ghosh, R. Ahuja, J. Antony, S. Babu, J. Chacko, G.K. Chaudhari, A. Chaudhary, T.S. Datta, R.N. Dutt, R. Joshi, D. Kanjilal, S. Kar, J. Karmakar, M. Kumar, R. Kumar, D.S. Mathuria, K.K. Mistri, A. Pandey, P. Patra, P.N. Potukuchi, A. Rai, J. Sacharias, B.K. Sahu, A. Sarkar, S.S.K. Sonti, S. K. Suman
    IUAC, New Delhi, India
  • A. Roy
    VECC, Kolkata, India
 
  The superconducting linac of IUAC consists of five cryostats containing 27 niobium quarter wave resonators. The prototype and the first 12 resonators were fabricated in collaboration with Argonne National Laboratory. The fabrication of the remaining resonators were carried out using in-house facilities available at IUAC. During the initial period of linac operations, problems were faced to generate higher accelerating fields in the resonators inside the linac cryostat and to reproduce the high fields at the time of beam acceleration. With systemetic efforts, all the major problems are solved and the complete linac is now operational. Since last few years, energized ion beams from linac are being delivered routinely for scheduled experiments. Among the major developmental works related to the linac operation, the vibrational damping mechansim by SS-balls, use of piezo actuator as mechanical tuner and the calculation of optimum phase focussing to control the time width of the beam bunches are noteworthy. Other two developments e.g. automatic phase locking of the resonators and auto beam tuning of the complete linac will be tested during the next beam acceleration.  
 
TUPP095 High-Power Test Results of the RFQ III in J-PARC Linac rfq, operation, cavity, vacuum 649
 
  • T. Morishita, K. Hasegawa, K. Hirano, Y. Kondo, H. Oguri, S. Yamazaki
    JAEA/J-PARC, Tokai-Mura, Naka-Gun, Ibaraki-Ken, Japan
  • T. Hori
    JAEA, Ibaraki-ken, Japan
  • F. Naito, T. Sugimura, A. Takagi
    KEK, Ibaraki, Japan
 
  The J-PARC accelerator comprises an injector linac, a 3-GeV Rapid-Cycling Synchrotron and a 50-GeV Main Ring. The beam energy of the linac has been upgraded from 181MeV to 400MeV in 2013. For the beam current upgrade, the new frontend (RF ion source, RFQ, chopping system) installation is scheduled in summer 2014 for 1MW operation at RCS. The RFQ III, which is designed for 50mA beam acceleration from 0.05MeV to 3MeV, has been fabricated and the high-power test has started at April 2013 at the test station in the J-PARC. The test station consists of the ion source, the LEBT, the RFQ, and the diagnostics devices. The nominal RF power and RF duty of the RFQ III are 380kW and 3%(0.6ms and 50Hz), respectively. The high-power conditioning reached to the 120% of the nominal power with 1.5% (0.6ms, 25Hz) RF duty within 24 hours. Then, we performed the beam operation at the test station and measured beam parameters after the RFQ III. The results of the high-power conditioning and the stability of the RFQ operation with beam will be discussed.  
 
TUPP100 Operation Of The Versatile Accelerator Driving the Low Power ADS GUINEVERE at SCK•CEN neutron, target, operation, ion-source 659
 
  • M.A. Baylac, A. Billebaud, P. Boge, D. Bondoux, J. Bouvier, S. Chabod, G. Dargaud, E. Froidefond, E. Labussière, R. Micoud, S. Rey
    LPSC, Grenoble Cedex, France
  • A. Kochetkov, J. Mertens, F. Van Gestel, C. Van Grieken, B. Van Houdt, G. Vittiglio
    SCK•CEN, Mol, Belgium
  • F.R. Lecolley, J.L. Lecouey, G. Lehaut, N. Marie-Nourry
    CNRS/IN2P3/LPC CAEN, Caen, France
 
  GUINEVERE provides a low power accelerator driven system (ADS) to investigate on-line reactivity monitoring and operational procedures of an ADS. It consists of a versatile neutron source, GENEPI-3C, driving the fast sub-critical core, VENUS-F, in SCK•CEN (Belgium). GENEPI-3C is an electrostatic accelerator generating 14 MeV neutrons by bombarding a 250 keV deuteron beam onto a tritium target located within the reactor core. This accelerator produces alternatively continuous beam (up to 1 mA DC), possibly chopped with fast and adjustable interruptions, or short and intense deuteron bunches (~25 mA peak, 1 μs). This paper presents the facility and assesses the 2 years of coupled operation of the accelerator to the reactor.  
slides icon Slides TUPP100 [0.969 MB]  
 
TUPP139 Design Studies with DEMIRCI for SPP RFQ rfq, software, interface, cavity 740
 
  • B. Yasatekin, G. Turemen
    Ankara University, Faculty of Sciences, Ankara, Turkey
  • A. Alacakir
    TAEK, Ankara, Turkey
  • G. Unel
    UCI, Irvine, California, USA
 
  To design a Radio Frequency Quadrupole (RFQ) is a onerous job which requires a good understanding of all the main parameters and the relevant calculations. Up to the present there are only a few software packages performing this task in a reliable way. These legacy software, though proven in time, could benefit from the modern software development tools like Object Oriented (OO) programming. In this note, a new RFQ design software, DEMIRCI is introduced. It is written entirely from scratch using C++ and based on CERN's OO ROOT library. It has a user friendly graphical user interface and also a command line interface for batch calculations. It can also interact by file exchange with similar software in the field. After presenting the generic properties of DEMIRCI, its compatibility with similar software packages is discussed based on the results from the reference design parameters of SPP (SNRTC Project Prometheus), a demonstration accelerator at Ankara, Turkey.  
poster icon Poster TUPP139 [11.590 MB]  
 
WEIOB01 Chopping High-Intensity Ion Beams at FRANZ proton, rfq, ion-source, solenoid 765
 
  • C. Wiesner, M. Droba, O. Meusel, D. Noll, O. Payir, U. Ratzinger, P.P. Schneider
    IAP, Frankfurt am Main, Germany
 
  The accelerator-driven Frankfurt Neutron Source FRANZ is under construction at the science campus of Frankfurt University. Its Low-Energy Beam Transport (LEBT) line also serves as test stand for transport and chopping experiments with high-intensity ion beams. The high-current proton source was tested successfully with dc currents above 200 mA . The LEBT section consisting of four solenoids and a 250 kHz, 120 ns chopper was successfully commissioned using a helium test beam at low beam currents. Transport simulations including space-charge compensation and measurements are discussed. Simulations and experimental results of the novel LEBT chopper using a Wien-filter type field array and pulsed electrode voltages of up to ±6kV will be presented.  
slides icon Slides WEIOB01 [7.925 MB]  
 
WEIOB03 Status of RAON Heavy Ion Accelerator Project rfq, cavity, linac, target 775
 
  • D. Jeon, H.J. Kim
    IBS, Daejeon, Republic of Korea
 
  Funding: This work was supported by the Institute for Basic Science funded by the Ministry of Science, ICT and Future Planning (MSIP) and the NRF of Korea under Contract 2013M7A1A1075764.
Construction of the RAON heavy ion accelerator facility is under way in Korea to build the In-flight Fragment (IF) and Isotope Separation On-Line (ISOL) facilities to support cutting-edge researches in various science fields. At present prototyping of major components are proceeding including 28 GHz ECR ion source, RFQ, superconducting cavities, magnets and cryomodules. Superconducting magnets of 28 GHz ECR ion source are fabricated and tested. First article of prototype superconducting cavities are delivered that were fabricated through domestic vendors. Prototype HTS quadrupole is under development. Progress report of the RAON accelerator systems is presented.
 
slides icon Slides WEIOB03 [6.228 MB]  
 
WEIOB04 CW Heavy Ion Accelerator With Adjustable Energy for Material Science cavity, linac, rfq, heavy-ion 780
 
  • S.V. Kutsaev, B. Mustapha, J.A. Nolen, P.N. Ostroumov
    ANL, Argonne, USA
 
  Funding: This work was supported by the U.S. Department of Energy, Office of Nuclear Physics, under Contract No. DE-AC02-06CH11357
The proposed eXtreme MATerial (XMAT) research facility at ANL’s Advanced Photon Source (APS) combines medium-energy heavy-ion accelerator capability with the high-energy X-ray analysis to enable rapid in situ mesoscale bulk analysis of ion radiation damage in advanced materials and nuclear fuels. The XMAT facility requires CW heavy ion accelerator with adjustable beam energy in the range of 300 keV/u to 1.25 MeV/u. Such an accelerator has been developed and based on ECR, normal conducting RFQ and multi-gap quarter wave resonators (QWR) operating at 60 MHz. This talk will present complete 3D beam dynamics studies and multi-physics design of both RFQ and QWRs. The design includes a beam transport system capable to focus ions into 20-micron diameter spot on the target.
 
slides icon Slides WEIOB04 [1.159 MB]  
 
THIOC02 Allison Scanner Emittance Diagnostic Development at TRIUMF emittance, electron, gun, TRIUMF 829
 
  • A. Laxdal, F. Ames, R.A. Baartman, W.R. Rawnsley, A. Sen, V.A. Verzilov, G. Waters
    TRIUMF, Canada's National Laboratory for Particle and Nuclear Physics, Vancouver, Canada
  • R.V. Hariwal
    IUAC, New Delhi, India
  • M. Kownacki
    SFU, Burnaby, BC, Canada
  • R.F. Paris
    University of Ottawa, Ottawa, Ontario, Canada
 
  TRIUMF has developed Allison scanners to measure the transverse emittance of both low intensity hadron beams at 104 pps and high intensity electron beams at 10mA for a dynamic range of more than 1012 in intensity. The devices give high resolution transverse emittance information in a compact package that fits in a single diagnostic box. The talk will present the design and performance of the operating devices.  
slides icon Slides THIOC02 [2.349 MB]  
 
THPP015 Status of the FAIR Proton Source and LEBT linac, diagnostics, proton, ion-source 863
 
  • N. Chauvin, O. Delferrière, Y. Gauthier, P. Girardot, J.L. Jannin, A. Lotode, N. Misiara, J. Neyret, F. Senée, C.S. Simon, O. Tuske
    CEA/IRFU, Gif-sur-Yvette, France
  • R. Berezov, J. Fils, P. Forck, R. Hollinger, V. Ivanova, C. Ullmann, W. Vinzenz
    GSI, Darmstadt, Germany
  • A. Maugueret
    CEA/DSM/IRFU, France
 
  The unique Facility for Antiproton and Ion Research – FAIR will deliver stable and rare isotope beams covering a huge range of intensities and beam energies. A significant part of the experimental program at FAIR is dedicated to antiproton physics that requires an ultimate number 7x1010 cooled pbar/h. The high-intensity proton beam that is necessary for antiproton production will be deliver by a dedicated 75 mA/70 MeV proton linac. The injector section of this accelerator is composed by an ECR source, delivering a pulsed 100 mA H+ beam (4 Hz) at 95 keV and a low energy beam transport (LEBT) line required to match the beam for the RFQ injection. The proposed design for the LEBT is based on a dual solenoids focusing scheme. A dedicated chamber containing several diagnostics (Alisson scanner, Wien filter, SEM grid, Iris, Faraday Cup) will be located between the two solenoids. At the end of the beam line, an electrostatic chopper system is foreseen to inject up to 50μseconds long beam pulses into the RFQ. The status of LEBT simulations, design and fabrication of the FAIR proton injector will be presented.  
 
THPP030 Status of the Design Study for 10 MHz Post-accelerated Radioactive Ion Beams at HIE-ISOLDE rfq, emittance, bunching, linac 901
 
  • M.A. Fraser, R. Calaga
    CERN, Geneva, Switzerland
 
  A ten-fold increase in the bunch spacing of post-accelerated radioactive ion beams has been requested by several research groups at ISOLDE, CERN in order for experiments to use time-of-flight particle identification and background suppression techniques. It is proposed to bunch externally into the existing REX-ISOLDE RFQ at a sub-harmonic frequency of 10.128 MHz to produce the desired 100 ns bunch separation with minimal loss in transmission. The status of a beam dynamics design study carried out to meet this request will be presented in the framework of the HIE-ISOLDE linac upgrade at CERN.  
 
THPP037 Commissioning and Operational Experience Gained with the Linac4 RFQ at CERN rfq, linac, cavity, emittance 926
 
  • C. Rossi, L. Arnaudon, P. Baudrenghien, G. Bellodi, O. Brunner, J. Hansen, J.-B. Lallement, A.M. Lombardi, J. Noirjean
    CERN, Geneva, Switzerland
  • M. Desmons, A. France, O. Piquet
    CEA/DSM/IRFU, France
 
  The installation of Linac4 has started in 2013 with the 3 MeV Front End, aiming at delivering a fully commissioned 160 MeV H beam by 2016. During summer 2013 the H ion source, a clone of the first prototype, and the Low Energy Beam Transport lines have been installed in the Linac4 tunnel followed shortly by the Radiofrequency Quadrupole accelerator (RFQ), operating at the RF frequency of 352.2 MHz and which accelerates the ion beam to the energy of 3 MeV. The RFQ, which had already been commissioned at the 3 MeV Test Stand, was this time driven by a fully digital LLRF system. This paper reports the result of the bead-pull field check performed after the installation in the tunnel, the experience gained during recommissioning and the results of field characterization as a function of the water temperature in the RFQ cooling channels, showing how the accelerating field can be adjusted by simply tuning the different cavity modules.  
 
THPP056 Status of the Warm Front End of PXIE rfq, kicker, emittance, solenoid 976
 
  • A.V. Shemyakin, M.L. Alvarez, R. Andrews, C.M. Baffes, A.Z. Chen, R.T.P. D'Arcy, B.M. Hanna, L.R. Prost, G.W. Saewert, V.E. Scarpine, J. Steimel, D. Sun
    Fermilab, Batavia, Illinois, USA
  • R.T.P. D'Arcy
    UCL, London, United Kingdom
  • D. Li
    LBNL, Berkeley, California, USA
 
  Funding: Fermilab is operated by Fermi Research Alliance, LLC, under Contract DE-AC02-07CH11359 with the United States Department of Energy
A CW-compatible, pulsed H superconducting linac is envisaged as a possible path for upgrading Fermilab’s injection complex. To validate the concept of the front-end of such machine, a test accelerator (a.k.a. PXIE) is under construction. The warm part of this accelerator comprises a 10 mA DC, 30 keV H ion source, a 2m-long LEBT, a 2.1 MeV CW RFQ, and a 10-m long MEBT that is capable of creating a large variety of bunch structures. The paper will report commissioning results of a partially assembled LEBT, status of RFQ manufacturing, and describe development of the MEBT, in particular, of elements of its chopping system.
 
 
THPP067 Status of the SPP RFQ Project rfq, ion-source, cavity, diagnostics 1004
 
  • G. Turemen, B. Yasatekin
    Ankara University, Faculty of Sciences, Ankara, Turkey
  • A. Alacakir
    TAEK, Ankara, Turkey
  • G. Unel
    UCI, Irvine, California, USA
  • H. Yildiz
    Istanbul University, Istanbul, Turkey
 
  The SPP project at TAEA will use 352.2 MHz 4-vane Radio Frequency Quadrupole (RFQ) to accelerate H+ ions from 20 KeV to 1.5 MeV. With the design already complete the project is at the test production phase. To this effect, a so called "cold model" of 50cm length has been produced to validate the design approach, to perform the low power RF tests and to evaluate possible production errors. This paper will report on the current status of the low energy beam transport line (LEBT) and RFQ cavity of the SPP project. It will also discuss the design and manufacturing of the RF power supply and its transmission line. In addition, the test results from some of the LEBT components will be shown and the final RFQ design will be shared.  
poster icon Poster THPP067 [6.947 MB]  
 
THPP068 Cold Power Tests of the SC 325 MHz CH-Cavity cavity, controls, linac, heavy-ion 1007
 
  • M. Busch, M. Amberg, F.D. Dziuba, H. Podlech, U. Ratzinger
    IAP, Frankfurt am Main, Germany
  • M. Amberg
    HIM, Mainz, Germany
 
  Funding: Work supported by GSI, BMBF Contr. No. 06FY7102
At the Institute for Applied Physics (IAP), Frankfurt University, a superconducting 325 MHz CH-Cavity has been designed, built and first tests have successfully been performed. The cavity is determined for a 11.4 AMeV, 10 mA ion beam at the GSI UNILAC. Consisting of 7 gaps this resonator is envisaged to deliver a gradient of 5 MV/m. Novel features of this structure are a compact design, low peak fields, improved surface processing and power coupling. Furthermore a tuner system based on bellow tuners driven by a stepping motor and a piezo actuator and attached inside the resonator will control the frequency. In this contribution measurements executed at 4 K and 2 K at the cryo lab in Frankfurt will be presented.
 
poster icon Poster THPP068 [1.449 MB]  
 
THPP070 Alternative Compact LEBT Design for the FAIR Injector Upgrade focusing, space-charge, rfq, emittance 1013
 
  • K. Schulte, M. Droba, S. Klaproth, O. Meusel, D. Noll, U. Ratzinger
    IAP, Frankfurt am Main, Germany
  • S.G. Yaramyshev
    GSI, Darmstadt, Germany
 
  In order to provide high intensity and brightness of the uranium beam for the planned FAIR project, the existing High Current Injector (HSI) at GSI has to be upgraded*. A part of the upgrade program is the design and construction of a compact straight injection line into the 36 MHz Radio Frequency Quadrupole of the HSI. As an alternative to a conventional LEBT design consisting of magnetic systems such as solenoids or quadrupoles, the application of Gabor lenses has been investigated. The focusing force of the Gabor lens is created by the space charge of an electron cloud, confined by crossed magnetic and electric fields inside the lens volume. Therefore, the Gabor lens combines strong, electrostatic focusing with simultaneous space-charge compensation. In previously performed beam transport experiments at GSI a prototype Gabor lens has been tested successfully. Furthermore, the operation and performance of such a device in a real accelerator environment has been studied. In this contribution an alternative LEBT design will be discussed and an improved Gabor lens design will be presented.
*W. Barth et al., “HSI-Frontend Upgrade”, GSI Scientific Report, 2009
 
 
THPP094 The Heavy Ion Injector at the NICA Project rfq, heavy-ion, linac, ion-source 1068
 
  • A.V. Butenko, D.E. Donets, E.E. Donets, A.D. Kovalenko, A.O. Sidorin, A. Tuzikov
    JINR/VBLHEP, Moscow, Russia
  • V. Aleksandrov, E.D. Donets, A. Govorov, V. Kobets, K.A. Levterov, I.N. Meshkov, V.A. Mikhaylov, V. Monchinsky, G.V. Trubnikov
    JINR, Dubna, Moscow Region, Russia
  • H. Hoeltermann, H. Podlech, U. Ratzinger, A. Schempp
    BEVATECH, Frankfurt, Germany
  • T. Kulevoy, D.A. Liakin
    ITEP, Moscow, Russia
 
  The general goals of the Nuclotron-based Ion Collider fAcility (NICA) project at JINR (Dubna) are providing of colliding beams for experimental studies of both hot and dense strongly interacting baryonic matter and spin physics. The experiments will be performed in collider mode and at fixed target. The first part of the project program requires the collisions of heavy nuclei up to 197Au79+ to be studied. The new heavy ion linac – HILac (Heavy Ion Linear Accelerator) will accelerate ions with q/A – values above 0.16 to 3.2 MeV/u is under manufacturing presently. The main features of HILac are described.  
 
THPP095 Design Study of Superconducting Linear Accelerator for Unstable Ion Beams in RISP linac, emittance, simulation, ISOL 1071
 
  • J.G. Hwang, C. Kim, E.-S. Kim
    Kyungpook National University, Daegu, Republic of Korea
  • B.H. Choi, H. Jang, D. Jeon, H.J. Kim, H.J. Kim, I. Shin
    IBS, Daejeon, Republic of Korea
  • L. Lee
    KNU, Deagu, Republic of Korea
 
  The post accelerator of RAON can accelerate the unstable and stable ion beams up to 15 MeV/u for 132Sn16+ and 58Ni8+ for 16.5 MeV/u, which has the ratio of mass to charge, A/q, of 8.3. The unstable ion beam such as 132Sn16+ produced by an ISOL system has the large transverse and longitudinal emittances. The post-accelerator consists of post-LEBT, RFQ, MEBT and superconduction linac(SCL3 and we optimized acceptance and beam envelope based on the beam dynamics in the linac. The accelerated beam by post accelerator was transported by the post-to-driver transport (P2DT) line which consists of a charge stripper, two charge selection sections and a telescope section with the bunching cavities to the high energy linac(SCL2) and accelerated up to 200 MeV/u. In this presentation, we will show the criteria for the design of the post accelerator and result of beam tracking simulation from post-LEBT to end of high energy linac.  
 
THPP108 Status of New 2.5 MeV Test Facility at SNS rfq, ion-source, operation, neutron 1105
 
  • A.V. Aleksandrov, M.S. Champion, M.T. Crofford, Y.W. Kang, A.A. Menshov, R.T. Roseberry, M.P. Stockli, A. Webster, R.F. Welton, A.P. Zhukov
    ORNL, Oak Ridge, Tennessee, USA
  • K. Ewald
    Fermilab, Batavia, Illinois, USA
  • M.E. Middendorf, S.N. Murray, R.B. Saethre
    ORNL RAD, Oak Ridge, Tennessee, USA
 
  Funding: Oak Ridge National Laboratory is managed by UT-Battelle, LLC, under contract DE-AC05-00OR22725 for the U.S. Department of Energy
A new 2.5Mev beam test facility is being built at SNS. It consists of a 65 keV H ion source, a 2.5MeV RFQ, a beam line with various beam diagnostics and a 6 kW beam dump. The facility is capable of producing one-ms-long pulses at 60Hz repetition rate with up to 50mA peak current. Commissioning with reduced average beam power is planned for fall 2014 to verify operation of all systems. The full power operation is scheduled to begin in 2015. Status of the facilty will be presented as well as discussion of the future R&D program.
 
 
THPP115 PKU 2.45 GHz Microwave Driven H Ion Source Performance Study electron, ion-source, operation, experiment 1120
 
  • T. Zhang, J.E. Chen, Z.Y. Guo, S.X. Peng, H.T. Ren, Y. Xu, J.F. Zhang, J. Zhao
    PKU, Beijing, People's Republic of China
  • A.L. Zhang
    University of Chinese Academy of Sciences, Beijing, People's Republic of China
 
  Funding: This work is supported by the National Science Foundation of China (Grant Nos. 11175009, 91126004 and 11305004)
  In a high intensity volume-produced H ion source, H ion production processes are great affected by electron temperature and gas pressure distribution within the discharge chamber. The H-/e ratio within an extracted H ion beam is much depended on the electron absorption within the extraction system. At Peking University (PKU), lots of experiments were carried out for better understanding H processes and electron dump on our 2.45 GHz microwave driven Cs-free permanent magnet volume-produced H source. Detail will be given in this paper.
Author to whom correspondence should be addressed. Electronic mail:
sxpeng@pku.edu.cn.
 
poster icon Poster THPP115 [2.252 MB]  
 
THPP116 Performance of New Injector RILAC2 for Riken Ri-Beam Factory cyclotron, injection, ECRIS, operation 1123
 
  • N. Sakamoto, M. Fujimaki, N. Fukunishi, Y. Higurashi, O. Kamigaito, H. Okuno, K. Suda, T. Watanabe, Y. Watanabe, K. Yamada
    RIKEN Nishina Center, Wako, Japan
  • R. Koyama
    SHI Accelerator Service Ltd., Tokyo, Japan
 
  New injector called RILAC2 was designed and constructed to provide intense uranium beams with A/q≈7 with an energy of 0.67 MeV/u which are injected to the succeeding ring cyclotron, RIKEN Ring Cyclotron, called RRC. After the last LINAC conference where the commissioning of the RILAC2 was reported, some modifications and improvements with RILAC2 have been made aiming at stable operation. Recently, transmission efficiency and stability of the beams have been improved and the average beam current more than 20 pnA for uranium 345 MeV/u acceleration has been realized. In this paper the modifications and improvements of the RILAC2 together with the present performance are reported.  
 
THPP118 Design of a New Superconducting Linac for the RIBF Upgrade linac, cyclotron, acceleration, emittance 1127
 
  • K. Yamada, O. Kamigaito, N. Sakamoto, K. Suda
    RIKEN Nishina Center, Wako, Japan
 
  An upgrade plan for the RIKEN RI-Beam Factory[1] is under discussion, the objective being to significantly increase the uranium beam intensity. In the upgrade plan, the existing ring cyclotron called RRC[2] will be replaced by a new linac, mainly consisting of superconducting (SC) cavities. The new linac is designed to accelerate heavy ions with a mass-to-charge ratio of ~7, such as 238U35+, up to an energy of 11 MeV/u in the cw mode. The present injector linac, RILAC2[3], will be used for the low-energy end, and a short room-temperature (RT) section will be added to RILAC2, which will boost the beam energy up to 1.4 MeV/u. The succeeding SC section consists of 14 cryomodules, each of which contains four quater-wavelength resonators (QWRs) with two gaps operated at 73 MHz. A RT quadrupole doublet is placed in each gap between the cryomodules. The modular configuration of the SC section was optimized based on the first-order approximation for the transverse and longitudinal motions. The designs of SC QWR were carried out using CST Microwave Studio 2013. Further study is under way on the SC QWR including the mechanical considerations, and we also start a design of cryostats.
[1] Y. Yano, Nucl. Instr. Meth. B 261, 1009 (2007).
[2] Y. Yano, Proc. 13th Int. Cyclo. Conf., 102 (1992).
[3] K. Yamada et al., Proc. of IPAC'12, TUOBA02, 1071 (2012).
 
 
THPP138 Measurements of Beam Current and Energy-Dispersion for Ion Beam with Multi-Components ion-source, vacuum, experiment, simulation 1185
 
  • A.L. Zhang
    University of Chinese Academy of Sciences, Beijing, People's Republic of China
  • J.E. Chen, Z.Y. Guo, S.X. Peng, H.T. Ren, Y. Xu, T. Zhang, J. Zhao
    PKU, Beijing, People's Republic of China
  • J.E. Chen
    Graduate University, Chinese Academy of Sciences, Beijing, People's Republic of China
 
  Funding: This work is supported by the National Science Foundation of China(Grant Nos. 91126004).
The multi-component ion beam is very common in nuclear physics, materials physics and most kind of ion source. But the diagnosis of multi-component ion beam [1] can be difficult because of its complex composition and irregular energy-dispersion. We need an effective way to analyzing the multi-component ion beam. There is a multi-component ion beam whose total beam current varies from 1 mA to 50mA and the beam energy can be 20keV to 150keV. In this paper, four methods to analyzing this multi-component ion beam are described, which are Faraday cup array method, fluorescent screen with Faraday cup, movable aperture with conductive fluorescent screen, and current calibration method, respectively. The distributions and currents of the separated ion beams are obtained by means of the four methods, and the current and energy-dispersion of each component might be measured at the same time. This is of special interest for beams with multi-components. Detailed description and comparison of the four methods are discussed in this paper.
Correspondence Author:Peng ShiXiang.
Email: sxpeng@pku.edu.cn
 
poster icon Poster THPP138 [0.419 MB]  
 
FRIOB02 Proton and Carbon Linacs for Hadron Therapy linac, proton, hadron, hadrontherapy 1207
 
  • A. Degiovanni, U. Amaldi
    TERA, Novara, Italy
  • A. Degiovanni
    CERN, Geneva, Switzerland
 
  Beams of 200 MeV protons and 400 MeV/u fully stripped carbon ions are used for the treatment of solid tumours seated at a maximum depth of 27 cm. More than 100’000 patients have been treated with proton beams and more than 10’000 with carbon ions. Very low proton currents - of the order of 1 nA - are enough to deliver the typical dose of 2 Gy/l in one minute. In the case of carbon ions the currents are of the order of 0.1-0.2 nA. For this reason 3 GHz linacs are well suited in spite of the small apertures and low duty cycle. The main advantage of linacs, pulsing at 200-400 Hz, is that the output energy can be continuously varied pulse-by-pulse and in 2-3 min a moving tumour target can be covered about 10 times by deposing the dose in many thousands of ‘spots’. High frequency hadron therapy linacs have been studied in the last 20 years and are now being built as hearts of proton therapy centres, while carbon ion linacs are still in the designing stage. At present the main challenges are the reduction of the footprint of compact ‘single-room’ proton machines and the power efficiency of dual proton and carbon ions ‘multi-room’ facilities.  
slides icon Slides FRIOB02 [14.013 MB]