Keyword: extraction
Paper Title Other Keywords Page
TUPB034 A Helium Injector for Coupled RFQ and SFRFQ Cavity Project at Peking University ion, ion-source, solenoid, rfq 552
 
  • S.X. Peng, J. Chen, J.E. Chen, S.L. Gao, Z.Y. Guo, P.N. Lu, H.T. Ren, Z. Wang, Y. Xu, J. Zhao
    PKU/IHIP, Beijing, People's Republic of China
 
  A new acceleration structure named as coupled RFQ and SFRFQ cavity is under design at Peking University (PKU). A pulsed He+ beam injector will be needed to transport 30 keV 20 mA He+ beam with a factor of 1/6, pulse width of 1 ms and normalized rms emittance less than 0.15 π{·}mm{·}mrad for this composited type cavity. Based on the experimental results obtained on the PKU LEBT test bench, a 1.16 m long two-solenoid type low energy beam transport (LEBT) line was developed. In this paper we will address the 30 keV He+ ion beam transportation experiment results on the test bench as well as the specific design on the helium injector.  
 
WE2A01 RF Power Production at the Two Beam Test Stand at CERN damping, recirculation, acceleration, target 738
 
  • I. Syratchev
    CERN, Geneva, Switzerland
 
  The generation of short (250 ns) high peak power (135 MW) RF pulses by decelerating the high current (100 A) bunched (12 GHz) drive beam is one of the key components in the CLIC two beam acceleration scheme. Recent tests with drive beam deceleration at CERN's CTF3, using specially developed 1 m long CLIC Power Extraction and Transfer Structure (PETS) operated in re-circulation regime have successfully demonstrated this concept. The results of these tests are presented.  
slides icon Slides WE2A01 [2.636 MB]  
 
THPB016 Concept: Low Energy, Low Intensity NF from ProjectX linac, target, proton, accumulation 882
 
  • M. Popovic
    Fermilab, Batavia, USA
 
  This note describes the concept of a Low Luminosity Low Energy Neutrino Factory (L3ENF) using a Project X pulsed, or CW, Linac at 8GeV. By collecting pis and mus with energy ~1 GeV, and accelerating them to 10 GeV, it is possible to store ~1020 mus per year. Most of the concepts suggested here can be tested using the Booster beam, Recycler, Antiproton Target Station, the Main Injector and the Tevatron. Once the VLENF Muon Storage Ring is built, components needed for L3ENF could be used in experiments before Project X completion.  
 
THPB076 Design Issues of the Proton Source for the ESS Facility plasma, proton, emittance, ion 1008
 
  • L. Celona, L. Allegra, C. Caliri, G. Castro, G. Ciavola, R. Di Giugno, S. Gammino, D. Mascali, L. Neri
    INFN/LNS, Catania, Italy
 
  The European Spallation Source facility will be one of the fundamental instruments for science and engineering of the future. A 2.5 GeV proton accelerator is to be built for the neutron production. INFN-LNS is involved in the Design Update for the proton source and Low Energy Beam Transport (LEBT) line. The proton source is required to produce a low emittance 90 mA beam, 2.86 ms pulsed with a repetition rate of 14 Hz. Microwave Discharge Ion Sources (MDIS) enable us to produce such high intensity proton beams characterized by very low emittance (< 0.2 π.mm.mrad). The source design is based on a flexible magnetic system which can be adapted to electrostatic Bernstein waves heating mechanism; this will permit a strong increase in the electron density with an expected boost of the output current. The main features of the source design, including the microwave injection system and beam extraction, will be described hereinafter.  
 
FR1A02 Light Ion ECR Sources State of the Art for Linacs ion, plasma, ion-source, emittance 1055
 
  • R. Gobin
    CEA/IRFU, Gif-sur-Yvette, France
  • N. Chauvin, O. Delferrière, O. Tuske, D. Uriot
    CEA/DSM/IRFU, France
 
  Since the middle of the 90’s development of high intensity light ion injectors are undertaken at CEA-Saclay. The first 100 mA proton beam has been produced by the SILHI ECR source in the framework of the IPHI project. Ever since, more than 100 mA of protons or deuteron beams, with high purities, have been regularly produced in pulsed or continuous mode, and with very good beam characteristics analyzed in dedicated beam diagnostics. CEA-Saclay is currently involved in several high intensity LINAC projects such as Spiral2, IFMIF-EVEDA and FAIR, and is in charge of their source and LEBT design and construction. This article reports the latest developments and experimental results carried out at CEA-Saclay for the 3 projects. In addition, a review of the developments and beam results performed in other laboratories worldwide will be also presented.  
slides icon Slides FR1A02 [4.743 MB]