

DE LA RECHERCHE À L'INDUSTRIE

LIGHT ION ECR SOURCES STATE OF THE ART FOR LINACS

LINAC2012

Raphaël GOBIN, N. CHAUVIN, O. DELFERRIERE, O. TUSKE, O. URIOT

www.cea.fr

SEPTEMBER 14, 2012

General assessments on light ion ECR sources

- General principle
- Several key points
- Pulsed beam and Space charge compensation

Worldwide overview

CEA involvement on IFMIF, Spiral 2 and FAIR projects

CO2

Negative ion HPPA are not listed in this table

	Particles	Intensity	Pulse length	Repetition	Duty Factor	Emittance
	p/d/H ⁻	mA	ms	Hz	%	π mm.mad
LEDA	H^+	100	CW	-	100	0.25
IPHI*	H^+	100	CW	-	100	0.25
TRASCO	H^+	30	CW	-	100	0.2
SARAF	H+, D+	2	CW	-	100	0.2
IFMIF*	D^+	140	CW	-	100	0.25
Spiral2*	H+, D+	5	CW	-	100	0.25
PEFP	H^+	20	2		8-20	
MYRRHA	H^+	10/25	CW	-	100	0.25
Chinese ADS	H^+	10	CW	-	100	
FAIR*	H^+	100	1	4	0.4	0.3
ImPUF	H+, D+	5	CW	-	100	
ESS	H^+	60/90	2.9	14	4	0.3
RISP	H_2^+, D^+	1 - 5				

One of the main requests, especially for ADS is the reliability **ECR ion sources (no filament, no antenna)**

Schematic drawing of an HPPA

(S. Gammino at ICIS 2009)

In the 90's, CEA started the IPHI project with the SILHI source. Goal : > 100 mA H+

and is now involved in several projects: IFMIF, SPIRAL2, FAIR, ESS, LINAC 4

GENERAL PRINCIPLE OF THE SOURCE

ECR Source \rightarrow Resonance zone if $\omega = e B / m$

2.45 GHz → 875 Gauss

- ω , pulsation
- e, electron charge
- B, magnetic field
- m, electron mass

Magnetic field provided by coils or permanent magnets Multi-electrode extraction system

SILHI source at CEA/Saclay

Several key points (1)

Protection of the window Electron repeller Ridged or tapered transition on RF chain Ceramic disks to improve electron density Resonance value at plasma chamber entrance Negative Triple junction shielding

Several key points (2)

How to limit the emittance growth?

Reduce LEBT length Small amount of heavy gas in LEBT can improve SCC

In PKU source and accel column are located into the vacuum chamber just in front of Sol1.

When HI beam interacts with residual gas, SCC occurs :

 $\mathrm{H^{+}} + \mathrm{H_{2}} \rightarrow \mathrm{H^{+}} + \mathrm{H_{2}^{+}} + \mathrm{e^{-}}$

Generally, electrons are confined in the beam and secondary ions are repelled towards the walls.

Space charge can reach close to 100 % but non-linearity exists (magnets, chamber size) and SCC can dramatically change.

Time is needed to reach SCC equilibrium

Time is needed to reach SCC equilibrium

Time is needed to reach SCC equilibrium

Time is needed to reach SCC equilibrium

Time is needed to reach SCC equilibrium

Time is needed to reach SCC equilibrium

Time is needed to reach SCC equilibrium

Time is needed to reach SCC equilibrium

Time is needed to reach SCC equilibrium

Time is needed to reach SCC equilibrium

Time is needed to reach SCC equilibrium

Pulse rise time depends on repetition rate and can reach 1 - 2 ms

HPPA worldwide ion source activity

Several groups develop ECR sources to produce high intensity light ion beams

DE LA RECHERCHE À L'INDUSTRI

Pioneers...

Ion source developed by N. Sakudo for implanters

Chalk River source with triode extr. system (T. Taylor, J-F. Mouris)

This source designed for LEDA allowed 75 mA accelerated beam behind 6.7 MeV RFQ

R. GOBIN - CEA | September 14, 2012 | PAGE 21

DE LA RECHERCHE À L'INDUSTR

Particles	Deuteron		Proton	
Parameter	Unit	Request	Status	Status
Particle Energy	keV	50	50	50
Macro-pulse Frequency	Hz	100	100	100
Pulse width	mS	1.0	0.1~1.0	0.1~1.0
LEBT input current (1 max)	mA	-	77 (83)	100 (120)
LEBT output current	mA	50	56	-
Ion fraction of source (LEBT)	%	>80 (90)	81.0 (99.5)	89.7
SRMS.A.Y	π.mm.mrad	< 0.2	0.12~0.16	< 0.2
Transmission	%	-	90	92.7

ImPUF is a new project in Peking University to produce fast neutrons dedicated to material research.

•CW accelerator

- $\cdot H_2^+$ beam operation for commissioning
- •D+ ~ 5 mA @ 3 40 MeV

•H+ ~ 5 mA @ 3 - 33 MeV

Very compact permanent magnet ion source

LINAC 2012

Courtesy Z. Zhang, Z. Zhao

IMP Lanzhou is involved in Tsinghua University irradiation tool (CPHS) project and Chinese ADS

For CADS, IMP is in charge of the design, construction and studies for both 35 keV injectors.

IMP Lanzhou

SARAF source in Israel

Courtesy L. Weissman

- Source and LEBT designed and built by RI (former ACCEL).
- Pulsed or continuous mode.
- High reliability.
- High molecular ion fraction.
- Ingenious variable aperture is placed after the dipole.

TRIPS, VIS and ESS source in Catania Courtesy L. Celona & S. Gammino

Important work is done at INFN/LNS on magnetic configuration

TRIPS with 2 coils and 80 kV DC break

VIS with permanent magnets + iron

3rd coil to obtain minimum B field in Plasma Chamber

with 2 + 1 coils.

RF Wave Guide

w/ couplers (from Klystron)

In Bilbao 1st proton beam has been extracted July 2012 at 15 keV with 25 mm gap.

2.7 GHz klystron operation ^{Colls}

In Belgium, Myrrha project is preparing a front end test stand in UCL with an ECR ion source from Pantechnik.

R. GOBIN - CEA | September 14, 2012 | PAGE 26

Spiral 2 in GANIL (France)

LINAC 2012

R. GOBIN - CEA | September 14, 2012 | PAGE 27

DE LA RECHERCHE À L'INDUSTRI

Spiral 2 Injector tested at Saclay

The whole Sp 2 injector has been built and tested at Saclay before transfer to GANIL in Caen

DE LA RECHERCHE À L'INDUSTRIE

Spiral 2 beam characterization

CW PROTON BEAM

Species measured after 1st dipole

CW DEUTERON BEAM

right after second dipole

DE LA RECHERCHE À L'INDUSTRIE

Spiral 2 beam characterization

CW PROTON BEAM

Species measured after 1st dipole

Emittances measured at the RFQ entrance flange

As shown on Tuesday, IFMIF is the machine of all the challenges... **as soon as the exit of the source.**

Requirements	Acceptance criteria	Comment	
Particle type	D ⁺	H ⁺ for injector conditioning	
Output energy Energy stability	100 keV ± 100 eV	Fixed by the RFQ acceptance	
Output D ⁺ current	140 mA	RFQ transmission $\ge 90\%$	
Species fraction D ⁺	≥95 %	At the output of the LEBT	
Beam current noise	≤2 % rms	At frequencies below ~1 MHz	
rms norm. emittance	\leq 0.30 π mm mrad	At the output of the LEBT	
Duty factor	CW	Possibility of pulsed operation.	
Modulation capability	1 ms – CW @ 1-20 Hz	Typically	

IFMIF Injector has been designed, built and under test at Saclay before shipment to Rokkasho site in Japan

R. GOBIN - CEA | September 14, 2012 | PAGE 31

IFMIF Extraction System

 \implies 100 KeV, 175 mA total beam current, 1560 A/m² (Φ 12mm)

 $(80\% D^+, 15\% D_2^+, 5\% D_3^+) \Leftrightarrow (140mA D^+, 26 mA D_2^+, 9 mA D_3^+)$

Preliminary tests at high energy showed high spark rate.

The installation of a 2nd grounded electrode (between puller and repeller) is underway.

IFMIF beam analysis

Electrode plasma Φ 10 _{ext}. = 81 mA $I_{BS} = 42 \text{ mA}$ (with cone)

LINAC 2012

DE LA RECHERCHE À L'INDUSTR

FAIR proton linac injector

FAIR p-linac injector

- SILHI-type ion source.
- The ion source is operating in pulsed mode.
- 5 electrode extraction system.
- LEBT with a 2 solenoids focusing scheme.
- LEBT design is based on IFMIF LEBT.
- Chopper system after the second solenoid.

- Pulsed beam (36µs-4Hz)
- Energy: 95 keV
- H⁺ : 100 mA at RFQ entrance

Diagnostics:

- Allison scanner.
- Wien Filter
- Wire scanner
- Iris
- 2 ACCTs

First beam in CEA-Saclay: Mid-2013

CONCLUSION

Several words from Bloomington: "For the proton therapy system we have been the ion source (20 keV – few mA into CW RFQ).

6 months servicing for changing BN disks Between 2006 and 2012 there have been no failures of the ion source."

In conclusion, such sources are very well adapted for HPPAs

Special thanks to:

- L. Celona
- V. Derenchuk
- S. Djekic,
- S. Gammino,
- S. Peng,
- D. Vandeplassche,
- L. Weissman
- Z. Zhang
- H. Zhao

and to SPIRAL 2, IFMIF and

FAIR injector groups. R. GOBIN CEA/Saclay DSM/IRFU/SACM/LEDA

Meeting ESS Bilbao at Saclay 35

Courtesy V. Derenchuk Thank you for your attention

Commissariat à l'énergie atomique et aux énergies alternatives Centre de Saclay | 91191 Gif-sur-Yvette Cedex T. +33 (0)1 69 08 27 64| F. +33 (0)1 69 08 14 30

Etablissement public à caractère industriel et commercial RCS Paris B 775 685 019

R. GOBIN - CEA | September 14, 2012

Direction Sciences de la Matière Institut de Recherche sur les lois Fondamentales de l'Univers Service Accélérateur, Magnétisme et Cryogénie