Author: Wisniewski, E.E.
Paper Title Page
MOPAB138 Dielectric Wakefield Acceleration with a Laser Injected Witness Beam 481
 
  • G. Andonian, T.J. Campese
    RadiaBeam, Santa Monica, California, USA
  • N.M. Cook
    RadiaSoft LLC, Boulder, Colorado, USA
  • D.S. Doran, G. Ha, J.G. Power, J.H. Shao, E.E. Wisniewski
    ANL, Lemont, Illinois, USA
  • W.J. Lynn, N. Majernik, J.B. Rosenzweig, V.S. Yu
    UCLA, Los Angeles, California, USA
 
  Funding: Work supported by DOE grant DE-SC0017690
The plasma pho­to­cath­ode con­cept, whereby a two-species gas mix­ture is used to gen­er­ate a beam -dri­ven ac­cel­er­at­ing wake­field and a laser-ion­ized gen­er­a­tion of a wit­ness beam, was re­cently ex­per­i­men­tally demon­strated. In a vari­a­tion of this con­cept, a beam-dri­ven di­elec­tric wake­field ac­cel­er­a­tor is em­ployed, filled with a neu­tral gas for laser-ion­iza­tion and cre­ation of a wit­ness beam. The di­elec­tric wake­fields, in the ter­a­hertz regime, pro­vide com­par­a­tively mod­est tim­ing re­quire­ments for the in­jec­tion phase of the wit­ness beam. In this paper, we pro­vide an up­date on the progress of the ex­per­i­men­tal re­al­iza­tion of the hy­brid di­elec­tric wake­field ac­cel­er­a­tor with laser in­jected wit­ness beam at the Ar­gonne Wake­field Ac­cel­er­a­tor (AWA), in­clud­ing en­gi­neer­ing con­sid­er­a­tions for gas de­liv­ery, and pre­lim­i­nary sim­u­la­tions.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB138  
About • paper received ※ 19 May 2021       paper accepted ※ 17 June 2021       issue date ※ 31 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB152 High Power Tests of Brazeless Accelerating Structures 532
 
  • S.P. Antipov, P.V. Avrakhov, C.-J. Jing, S.V. Kuzikov
    Euclid TechLabs, Solon, Ohio, USA
  • V.A. Dolgashev
    SLAC, Menlo Park, California, USA
  • D.S. Doran, W. Liu, J.G. Power, J.H. Shao, E.E. Wisniewski
    ANL, Lemont, Illinois, USA
 
  Funding: DOE SBIR Grant #DE-SC0017749
A typ­i­cal ac­cel­er­at­ing struc­ture is a set of cop­per res­onators brazed to­gether. This multi step process is ex­pen­sive and time con­sum­ing. In an ef­fort to op­ti­mize pro­duc­tion process for rapid pro­to­typ­ing and over­all re­duc­tion of ac­cel­er­a­tor cost we de­vel­oped a split block braze­less ac­cel­er­at­ing struc­ture. In such struc­ture the vac­uum is sealed by the use of knife edges, sim­i­lar to an in­dus­try stan­dard con­flat tech­nol­ogy. In this paper we pre­sent high power tests of sev­eral dif­fer­ent braze­less struc­tures. First, an in­ex­pen­sive 1 MeV ac­cel­er­a­tor pow­ered by radar mag­netron. Sec­ond, a high gra­di­ent power ex­trac­tor tested at Ar­gonne Wake­field Ac­cel­er­a­tor Fa­cil­ity. In this ex­per­i­ment a high charge elec­tron beam gen­er­ated a 180 MW peak power pulse. Fi­nally, we re­port on high power test­ing of a braze­less x-band ac­cel­er­at­ing struc­ture at SLAC.
 
poster icon Poster MOPAB152 [0.783 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB152  
About • paper received ※ 20 May 2021       paper accepted ※ 24 June 2021       issue date ※ 31 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB169 Generating 510 MW of X-Band Power for Structure-Based Wakefield Acceleration Using a Metamaterial-Based Power Extractor 578
 
  • J.F. Picard, I. Mastovsky, M.A. Shapiro, R.J. Temkin
    MIT/PSFC, Cambridge, Massachusetts, USA
  • M.E. Conde, D.S. Doran, J.G. Power, J.H. Shao, E.E. Wisniewski
    ANL, Lemont, Illinois, USA
  • C.-J. Jing
    Euclid TechLabs, Solon, Ohio, USA
  • X. Lu
    Northern Illinois University, DeKalb, Illinois, USA
 
  Funding: Research sponsored under Award No. DE-SC0015566 by U.S. Department of Energy, Office of Science, Office of High Energy Physics and Contract No. DE-AC02-06CH11357 by the Office of Science.
We pre­sent our re­cent re­sults gen­er­at­ing 510 MW of power at 11.7 GHz using a meta­ma­te­r­ial-based metal­lic power-ex­trac­tor for ap­pli­ca­tion in struc­ture-based wake­field ac­cel­er­a­tion (SWFA). SWFA is a novel ac­cel­er­a­tion scheme in which high-charge elec­tron bunches are passed through a power ex­trac­tor struc­ture to pro­duce a high-in­ten­sity wake­field. This wake­field can then be used to ac­cel­er­ate a wit­ness bunch in the same beam­line or passed to a sep­a­rate ac­cel­er­a­tion beam­line. MIT’s ap­proach uses a spe­cial­ized meta­ma­te­r­ial for the power ex­trac­tor de­sign. By using a meta­ma­te­r­ial, we can over­come some of the chal­lenges faced by other SWFA tech­niques. Here, we dis­cuss the Stage 3 ex­per­i­ment. The Stage 1 and Stage 2 ex­per­i­ments suc­cess­fully demon­strated the func­tion­al­ity of the meta­ma­te­r­ial ap­proach by gen­er­at­ing high power RF pulses using the 65 MeV elec­tron beam at the Ar­gonne Wake­field Ac­cel­er­a­tor (AWA) fa­cil­ity. The 510 MW re­sult from Stage 3 ex­per­i­ment is the high­est power gen­er­ated to-date for SWFA at AWA, and was en­able by sig­nif­i­cant de­sign im­prove­ments, in­clud­ing an all-cop­per struc­ture, fully-sym­met­ric cou­pler de­sign, and break­down risk-re­duc­tion treat­ment.
 
poster icon Poster MOPAB169 [8.882 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB169  
About • paper received ※ 08 May 2021       paper accepted ※ 16 July 2021       issue date ※ 25 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB287 The Development of Single Pulse High Dynamic Range BPM Signal Detector Design at AWA 909
 
  • E.M. Siebert, S. Baturin
    Northern Illinois University, DeKalb, Illinois, USA
  • D.S. Doran, G. Ha, W. Liu, P. Piot, J.G. Power, J.H. Shao, C. Whiteford, E.E. Wisniewski
    ANL, Lemont, Illinois, USA
 
  Funding: the US Department of Energy, Office of Science
Sin­gle pulse high dy­namic range BPM sig­nal de­tec­tor has been on the most wanted list of Ar­gonne Wake­field Ac­cel­er­a­tor (AWA) Test Fa­cil­ity for many years. Unique ca­pa­bil­i­ties of AWA beam­line re­quire BPM in­stru­men­ta­tion with an un­prece­dented dy­namic range, thus cost ef­fec­tive so­lu­tion could be chal­leng­ing to de­sign and pro­to­type. Our most re­cent de­sign, and the re­sults of our quest for a so­lu­tion, are shared in this paper.
 
poster icon Poster MOPAB287 [1.372 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB287  
About • paper received ※ 19 May 2021       paper accepted ※ 23 June 2021       issue date ※ 13 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB304 Beam Diagnostics for Multi-Objective Bayesian Optimization at the Argonne Wakefield Accelerator Facility 960
 
  • J.P. Gonzalez-Aguilera, Y.K. Kim
    University of Chicago, Chicago, Illinois, USA
  • W. Liu, P. Piot, J.G. Power, E.E. Wisniewski
    ANL, Lemont, Illinois, USA
  • R.J. Roussel
    Enrico Fermi Institute, University of Chicago, Chicago, Illinois, USA
 
  Par­ti­cle ac­cel­er­a­tors must achieve cer­tain beam qual­ity ob­jec­tives for use in dif­fer­ent ex­per­i­ments. Usu­ally, op­ti­miz­ing cer­tain beam ob­jec­tives comes at the ex­pense of oth­ers. Ad­di­tion­ally, there are many input pa­ra­me­ters and a lim­ited num­ber of di­ag­nos­tics. There­fore, ac­cel­er­a­tor tun­ing be­comes a multi-ob­jec­tive op­ti­miza­tion prob­lem with a lim­ited num­ber of ob­ser­va­tions. Multi-ob­jec­tive Bayesian op­ti­miza­tion was re­cently pro­posed as an ef­fi­cient method to find the Pareto front for an on­line ac­cel­er­a­tor tun­ing prob­lem with re­duced num­ber of ob­ser­va­tions. In order to ex­per­i­men­tally test the multi-ob­jec­tive Bayesian op­ti­miza­tion method, a novel ac­cel­er­a­tor di­ag­nos­tic is being de­signed to mea­sure mul­ti­ple beam qual­ity met­rics of an elec­tron beam at the Ar­gonne Wake­field Ac­cel­er­a­tor Fa­cil­ity. Here, we pre­sent a de­sign con­sist­ing in a pep­per-pot mask, a di­pole mag­net and a scin­til­la­tion screen, which al­lows a si­mul­ta­ne­ous mea­sure­ment of the elec­tron beam en­ergy spread and ver­ti­cal emit­tance. Ad­di­tion­ally, a sur­ro­gate model for the ver­ti­cal emit­tance was con­structed with only 60 ob­ser­va­tions and with­out prior knowl­edge of the ob­jec­tive func­tion nor di­ag­nos­tics con­straints.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB304  
About • paper received ※ 18 May 2021       paper accepted ※ 08 June 2021       issue date ※ 26 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB352 High Power Test of a Dielectric Disk Loaded Accelerator for a Two Beam Wakefield Accelerator 1096
 
  • B.T. Freemire, C.-J. Jing, S. Poddar
    Euclid Beamlabs, Bolingbrook, USA
  • M.E. Conde, D.S. Doran, G. Ha, W. Liu, J.G. Power, J.H. Shao, C. Whiteford, E.E. Wisniewski
    ANL, Lemont, Illinois, USA
  • M.M. Peng
    TUB, Beijing, People’s Republic of China
  • E.E. Wisniewski
    Illinois Institute of Technology, Chicago, Illinois, USA
  • Y. Zhao
    Euclid TechLabs, Solon, Ohio, USA
 
  Funding: Small Business Innovation Research Contract No. DE-SC0019864 U.S. DOE Office of Science Contract No. DE-AC02-06CH11357
As part of the Ar­gonne 500 MeV short pulse Two Beam Wake­field Ac­cel­er­a­tion Demon­stra­tor, a sin­gle cell X-band di­elec­tric disk loaded ac­cel­er­a­tor (DDA) has been de­signed, fab­ri­cated, and tested at high power at the Ar­gonne Wake­field Ac­cel­er­a­tor. The DDA should pro­vide a short pulse (~20 ns) high gra­di­ent (>300 MV/m) ac­cel­er­a­tor while main­tain­ing a rea­son­able r/Q and high group ve­loc­ity. This will allow a sig­nif­i­cantly larger RF-to-beam ef­fi­ciency than is cur­rently pos­si­ble for con­ven­tional ac­cel­er­at­ing struc­tures. A low loss bar­ium ti­tan­tate ce­ramic, µr = 50, was se­lected, and a low tem­per­a­ture braz­ing alloy cho­sen to pre­serve the di­elec­tric prop­er­ties of the ce­ramic dur­ing braz­ing. High power test­ing pro­duced break­down at the triple junc­tion, re­sult­ing from the braze joint de­sign. No ev­i­dence of break­down was ob­served on the iris of the disk, in­di­cat­ing that the max­i­mum sur­face elec­tric field on the di­elec­tric was not reached. An im­proved braze joint has been de­signed and is in pro­duc­tion, with high power test­ing to fol­low.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB352  
About • paper received ※ 19 May 2021       paper accepted ※ 08 June 2021       issue date ※ 21 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUXB06
High Transformer Ratio Plasma Wakefield Acceleration and Current Profile Reconstruction Using Emittance Exchange  
 
  • R.J. Roussel
    Enrico Fermi Institute, University of Chicago, Chicago, Illinois, USA
  • G. Andonian, A. Deng, C.E. Hansel, G.E. Lawler, W.J. Lynn, R. Robles, J.B. Rosenzweig, K. Sanwalka
    UCLA, Los Angeles, USA
  • S. Baturin
    Northern Illinois University, DeKalb, Illinois, USA
  • M.E. Conde, D.S. Doran, G. Ha, J.G. Power, J. Seok, C. Whiteford, E.E. Wisniewski
    ANL, Lemont, Illinois, USA
 
  Funding: This work is supported by the Department of Energy, Office of High Energy Physics, under Contract No. DESC0017648.
To over­come lim­its on total ac­cel­er­a­tion achiev­able in plasma wake­field ac­cel­er­a­tors, spe­cially shaped drive beams can be used to in­crease the trans­former ratio, im­ply­ing that the drive beam de­cel­er­a­tion is min­i­mized in com­par­i­son with ac­cel­er­a­tion ob­tained in the wake. We re­port the re­sults of a non­lin­ear PWFA, high trans­former ratio ex­per­i­ment using high-charge, lon­gi­tu­di­nally asym­met­ric drive beams in a plasma cell. An emit­tance ex­change process is used to gen­er­ate vari­able drive cur­rent pro­files, in con­junc­tion with a long (mul­ti­ple plasma wave­length) wit­ness beam. The wit­ness beam is en­ergy-mod­u­lated by the wake­field, yield­ing a re­sponse that con­tains de­tailed spec­tral in­for­ma­tion in a sin­gle-shot mea­sure­ment. Using these meth­ods, we gen­er­ate a va­ri­ety of beam pro­files and char­ac­ter­ize the wake­fields, di­rectly ob­serv­ing beam-loaded trans­former ra­tios up to 7.8. Fur­ther, a spec­trally-based cur­rent re­con­struc­tion tech­nique, val­i­dated by 3D par­ti­cle-in-cell sim­u­la­tions, is in­tro­duced to ob­tain the drive beam pro­file from the de­cel­er­at­ing wake­field data.
 
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB095 Arbitrary Longitudinal Pulse Shaping with a Multi-Leaf Collimator and Emittance Exchange 1600
 
  • N. Majernik, G. Andonian, J.B. Rosenzweig
    UCLA, Los Angeles, California, USA
  • D.S. Doran, G. Ha, J.G. Power, E.E. Wisniewski
    ANL, Lemont, Illinois, USA
  • R.J. Roussel
    Enrico Fermi Institute, University of Chicago, Chicago, Illinois, USA
 
  Funding: DOE HEP Grant DE-SC0017648, and National Science Foundation Grant No. PHY-1549132
Drive and wit­ness beams with vari­able cur­rent pro­files and bunch spac­ing can be gen­er­ated using an emit­tance ex­change beam­line (EEX) in con­junc­tion with trans­verse masks. Re­cently, this ap­proach was used to cre­ate ad­vanced dri­ver pro­files and demon­strate record-break­ing plasma wake­field trans­former ra­tios [Rous­sel, R., et al., Phys. Rev. Lett. 124, 044802 (2020)], a cru­cial ad­vance­ment for ef­fec­tive wit­ness ac­cel­er­a­tion. Presently, these trans­verse masks are in­di­vid­u­ally laser cut, mak­ing the re­fine­ment of beam pro­files a slow process. In­stead, we have pro­posed the used of a UHV com­pat­i­ble mul­ti­leaf col­li­ma­tor (MLC) to re­place these masks. An MLC per­mits real-time ad­just­ment of the beam mask­ing, per­mit­ting faster op­ti­miza­tion in a man­ner highly syn­er­gis­tic with ma­chine learn­ing. Beam dy­nam­ics sim­u­la­tions have shown that prac­ti­cal MLCs offer res­o­lu­tion that is func­tion­ally equiv­a­lent to that of­fered by the laser cut masks. In this work, the en­gi­neer­ing con­sid­er­a­tions and prac­ti­cal im­ple­men­ta­tion of such a sys­tem at the AWA fa­cil­ity are dis­cussed and the re­sults of bench­top tests are pre­sented.
* Roussel, Ryan, et al. PRL 124.4 (2020): 044802
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB095  
About • paper received ※ 19 May 2021       paper accepted ※ 20 July 2021       issue date ※ 29 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB295 Upgrade to the EPICS Control System at the Argonne Wakefield Accelerator Test Facility 2173
 
  • W. Liu, J.M. Byrd, D.S. Doran, G. Ha, A.N. Johnson, P. Piot, J.G. Power, J.H. Shao, G. Shen, C. Whiteford, E.E. Wisniewski
    ANL, Lemont, Illinois, USA
 
  Funding: US Department of Energy, Office of Science
The Ar­gonne Wake­field Ac­cel­er­a­tor (AWA) Test Fa­cil­ity has used a com­pletely home­brewed, MS Win­dows-based con­trol sys­tem for the last 20 years. In an ef­fort to mod­ern­ize the con­trol sys­tem and pre­pare for an ac­tive ma­chine learn­ing pro­gram, the AWA will work with the Ad­vanced Pho­ton Source (APS) con­trols group to up­grade its con­trol sys­tem to EPICS. The EPICS con­trol sys­tem is ex­pected to fa­cil­i­tate col­lab­o­ra­tions and sup­port the fu­ture growth of AWA. An overview of the pre­vi­ous AWA con­trol and data ac­qui­si­tion sys­tem is pre­sented, along with a vi­sion and path for com­plet­ing the EPICS up­grade.
 
poster icon Poster TUPAB295 [1.108 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB295  
About • paper received ※ 19 May 2021       paper accepted ※ 01 July 2021       issue date ※ 30 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB296 LLRF Upgrade at the Argonne Wakefield Accelerator Test Facility 2176
 
  • W. Liu, D.S. Doran, G. Ha, P. Piot, J.G. Power, J.H. Shao, C. Whiteford, E.E. Wisniewski
    ANL, Lemont, Illinois, USA
  • L.R. Doolittle, D. Filippetto, D. Li, S. Paiagua, C. Serrano, V.K. Vytla
    LBNL, Berkeley, California, USA
 
  Funding: US Department of Energy, Office of Science
The Ar­gonne Wake­filed Ac­cel­er­a­tor (AWA) Test Fa­cil­ity de­signed and op­er­ated a home­made LLRF sys­tem for the last 20 years. It is based on NI-PXI prod­ucts that has now be­come ob­so­lete. The AWA’s LLRF can­not keep up with the in­creas­ing sta­bil­ity de­mands of AWA’s up­graded fa­cil­ity. An over­haul of the sys­tem is strongly de­sired. With the sup­port from DOE-HEP, the AWA is col­lab­o­rat­ing with Lawrence Berke­ley Na­tional Lab­o­ra­tory (LBNL)to up­grade its LLRF sys­tem with mod­ern in­stru­men­ta­tion to meet the grow­ing sta­bil­ity de­mands. An overview of AWA’s cur­rent LLRF sys­tem per­for­mance is pre­sented to­gether with the up­grade plan and ex­pec­ta­tions.
 
poster icon Poster TUPAB296 [1.943 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB296  
About • paper received ※ 19 May 2021       paper accepted ※ 05 July 2021       issue date ※ 26 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB163 An X-Band Ultra-High Gradient Photoinjector 2986
 
  • S.V. Kuzikov, S.P. Antipov, P.V. Avrakhov, E. Dosov, C.-J. Jing, E.W. Knight
    Euclid TechLabs, Solon, Ohio, USA
  • G. Ha, C.-J. Jing, W. Liu, P. Piot, J.G. Power, D.S. Scott, J.H. Shao, E.E. Wisniewski
    ANL, Lemont, Illinois, USA
  • C.-J. Jing
    Euclid Beamlabs, Bolingbrook, USA
  • X. Lu
    MIT/PSFC, Cambridge, Massachusetts, USA
  • X. Lu
    SLAC, Menlo Park, California, USA
  • P. Piot
    Fermilab, Batavia, Illinois, USA
  • P. Piot, W.H. Tan
    Northern Illinois University, DeKalb, Illinois, USA
  • E.E. Wisniewski
    IIT, Chicago, Illinois, USA
 
  Funding: This work was supported by DoE SBIR grant # DE-SC0018709.
High bright­ness beams ap­peal­ing for XFELs and UEM es­sen­tially imply a high cur­rent and a low emit­tance. To ob­tain such beams we pro­pose to raise the ac­cel­er­at­ing volt­age in the gun mit­i­gat­ing re­peal­ing Coulomb forces. An ul­tra-high gra­di­ent is achieved uti­liz­ing a short-pulse tech­nol­ogy. We have de­signed a room tem­per­a­ture X-band 1,5 cell gun that is able to in­ject 4 MeV, 100 pC bunches with as low as 0.15 mcm nor­mal­ized trans­verse emit­tance. The gun is op­er­ated with as high gra­di­ents as 400 MV/m and fed by 200 MW, 10 ns RF pulses gen­er­ated with Ar­gonne Wake­field Ac­cel­er­a­tor (AWA) power ex­trac­tor. We re­port re­sults of low RF power tests, laser align­ment test re­sults, and suc­cess­ful gun con­di­tion­ing re­sults car­ried out at nom­i­nal RF power.
 
poster icon Poster WEPAB163 [5.427 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB163  
About • paper received ※ 18 May 2021       paper accepted ※ 02 June 2021       issue date ※ 19 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB331 High-Power Test of a Highly Over-Coupled X-Band RF Gun Driven by Short RF Pulses 4432
 
  • J.H. Shao, D.S. Doran, W. Liu, J.G. Power, C. Whiteford, E.E. Wisniewski
    ANL, Lemont, Illinois, USA
  • C.-J. Jing, S.V. Kuzikov
    Euclid TechLabs, Solon, Ohio, USA
  • X. Lu, P. Piot, W.H. Tan
    Northern Illinois University, DeKalb, Illinois, USA
 
  Beam bright­ness, a key fig­ure of merit of RF pho­to­cath­ode guns, can be im­proved by in­creas­ing the cath­ode sur­face field which sup­presses emit­tance growth from space charge. The sur­face field in nor­mal-con­duct­ing struc­tures is mainly lim­ited by RF break­down and it has been ex­per­i­men­tally dis­cov­ered that RF break­down rate ex­po­nen­tially de­pends on RF pulse length. A highly over-cou­pled 1.5-cell X-band pho­to­cath­ode gun has been de­vel­oped to be pow­ered by 9 ns RF pulses with 3 ns ris­ing time, 3 ns flat-top, and 3 ns falling time gen­er­ated by an X-band metal­lic power ex­trac­tor. In the re­cent ex­per­i­ment at Ar­gonne Wake­field Ac­cel­er­a­tor fa­cil­ity, cath­ode sur­face field up to ~350 MV/m with a low break­down rate has been ob­tained under ~250 MW input power. Strong beam load­ing from dark cur­rent was ob­served dur­ing RF con­di­tion­ing and quickly re­cov­ered to a neg­li­gi­ble level after the gun reached the max­i­mum gra­di­ent. De­tailed high-power test re­sults and data analy­sis will be re­ported in this man­u­script.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-THPAB331  
About • paper received ※ 25 May 2021       paper accepted ※ 14 July 2021       issue date ※ 23 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)