# **OUCLID** An X-Band Ultra-High Gradient Photoinjector

<u>Sergey V. Kuzikov<sup>1</sup></u>, Sergey P. Antipov<sup>1</sup>, Pavel Avrakhov<sup>1,2</sup>, Edward Dosov<sup>1,2</sup>, Ernest W. Knight<sup>1</sup>, Gwanghui Ha<sup>3</sup>, Wanming Liu<sup>3</sup>, John G. Power<sup>3</sup>, Doran Scott<sup>3</sup>, Jiahang Shao<sup>3</sup>, Chunguang Jing<sup>1,2,3</sup>, Philippe Piot<sup>3,4,5</sup>, Eric Wisniewski<sup>3,6</sup>, Xueying Lu<sup>7,8</sup>, Wei Hou<sup>5</sup>

<sup>1</sup>Euclid TechLabs, LLC, Solon, Ohio
<sup>2</sup>Euclid Beamlabs LLC, Bolingbrook
<sup>3</sup>ANL, Lemont, Illinois
<sup>4</sup>Fermilab, Batavia, Illinois
<sup>5</sup>Northern Illinois University, DeKalb, Illinois
<sup>6</sup>IIT, Chicago, Illinois
<sup>7</sup>MIT/PSFC, Cambridge, Massachusetts
<sup>8</sup>SLAC, Menlo Park, California

*This work was supported by DoE SBIR grant # DE-SC0018709.* 

#### **Outline:**

- 1. High-gradient photoinjector concept
- 2. Emittance simulations
- 3. RF design
- 4. Beamline engineering design

#### 5. High-gradient tests and measurements of beam energy and emittance

<u>Abstract:</u> High brightness beams appealing for XFELs and UEM essentially imply a high current and a low emittance. To obtain such beams we propose to raise the accelerating voltage in the gun mitigating repealing Coulomb forces. An ultra-high gradient is achieved utilizing a short-pulse technology. We have designed a room temperature X-band 1,5 cell gun that is able to inject 4 MeV, 100 pC bunches with as low as 0.15 mcm normalized transverse emittance. The gun is operated with as high gradients as 400 MV/m and fed by 200 MW, 10 ns RF pulses generated with Argonne Wakefield Accelerator (AWA) power extractor. We report results of low RF power tests, laser alignment test results, and successful gun conditioning results carried out at nominal RF power.



## Concept: e-injector (300 - 400 MV/m @ 10 ns)

For a fixed breakdown rate





$$E_a \cdot \tau^{1/6} = const$$

## CLIC / SLAC studies

RF design is a subject of this SBIR project



#### **Anticipated Gun Parameters**

| Parameter                | Value                     |
|--------------------------|---------------------------|
| Frequency                | 11.7 GHz                  |
| Mode quality factor      | 180                       |
| Mode separation          | 250 MHz                   |
| RF pulse length          | 10 ns (3 ns flat top)     |
| RF peak power            | up to 300 MW              |
| Maximum field at cathode | 350 MV/m                  |
| Energy of electrons      | 4 MeV                     |
| Bunch charge             | 100 pC                    |
| RMS bunch radius at      | 0.07mm, 0.13 mm           |
| cathode and at exit      |                           |
| RMS bunch length         | 4 ps                      |
| Normalized emittance     | 0.15 mm×mrad (with linac) |
| ΔΕ/Ε                     | 2.5×10 <sup>-3</sup>      |





 $S_{11}$  parameter (simulation)

(measurement) S<sub>11</sub> parameter

#### 0.55 T Solenoid for Emittance Compensation





B-field at axis

**B-field distribution** 

#### **Emittance Simulations**

For details of gun emittance simulations see also poster THPAB129.





#### **Beamline Design (experiment #2)**





#### **Beamline Design (experiment #2)**





#### Experiment #3: RF Feeding of Gun and Linac from the Same Power Source



**RF Phase Shifter** 





#### **RF Power Splitter**





#### **Beamline Design (experiment #3)**



## BREAKDOWN TEST OF A PROTYPE GUN AT AWA (2020)

- Achieved 350MV/m on cathode
- Observed strong dark current loading regime but quickly conditioned away
- It only took 70k pulses for a full condition
- Back to 200MV/m to 250MV/m region, no breakdown, no measurable dark current.













#### Reflection signal from bi-directional coupler

### **Adjustment of Optical Mirrors at Mockup**









#### **Full-Scale High-Power Experiment**







Tungsten pepper pot



## Conclusion

- High-gradient gun design promises a very low beam emittance (less than 0.15 mm×mrad).
- An operation with a very hort RF pulse (9 ns full duration, 3 ns flat top) preserves from breakdown and large dark current. This was confirmed at AWA experiment with 300 MW power extraction structure.
- 3. Lots of the components designed, fabricated and tested.
- Full-scale high-power experiments scheduled for this Spring (experiment #2) and fall of this year (experiment#3).

