Author: Sheehy, S.L.
Paper Title Page
MOPAB374 Creating Exact Multipolar Fields in Accelerating RF Cavities via an Azimuthally Modulated Design 1154
 
  • L.M. Wroe, S.L. Sheehy
    JAI, Oxford, United Kingdom
  • R. Apsimon
    Cockcroft Institute, Lancaster University, Lancaster, United Kingdom
  • M. Dosanjh
    CERN, Meyrin, Switzerland
  • S.L. Sheehy
    The University of Melbourne, Melbourne, Victoria, Australia
 
  In this paper, we present a novel method for designing RF structures with specifically tailored multipolar field contributions. This has a range of applications, including the suppression of unwanted multipolar fields or the introduction of wanted terms, such as for quadrupole focusing. In this article, we outline the general design methodology and compare the expected results to 3D CST simulations.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB374  
About • paper received ※ 19 May 2021       paper accepted ※ 08 June 2021       issue date ※ 23 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB236 First Order Analytic Approaches to Modelling the Vertical Excursion Fixed Field Alternating Gradient Accelerator 4262
 
  • M.E. Topp-Mugglestone, S.L. Sheehy
    JAI, Oxford, United Kingdom
  • J.-B. Lagrange, S. Machida
    STFC/RAL/ISIS, Chilton, Didcot, Oxon, United Kingdom
 
  Whilst the Vertical Excursion Fixed Field Alternating Gradient Accelerator (VFFA) remains a promising solution to a number of problems at the frontiers of accelerator physics, the optics of this type of machine are still poorly understood. Current designers are forced to rely on brute-force numerical tracking codes, with optimisation dependent on time-consuming parameter scans. With an aim to both improve understanding of this machine, as well as to develop tools for rapid design and optimisation of VFFA lattices, first steps towards an analytic approach based on a linearised Hamiltonian formalism have been developed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-THPAB236  
About • paper received ※ 13 May 2021       paper accepted ※ 14 July 2021       issue date ※ 10 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB234 Exploring Accelerators for Intense Beams with the IBEX Paul Trap 1980
 
  • J.A.D. Flowerdew
    University of Oxford, Oxford, United Kingdom
  • D.J. Kelliher, S. Machida
    STFC/RAL/ISIS, Chilton, Didcot, Oxon, United Kingdom
  • S.L. Sheehy
    STFC/RAL/ASTeC, Chilton, Didcot, Oxon, United Kingdom
 
  Accelerators built from linear components will exhibit bounded and stable particle motion in the ideal case. However, any imperfections in field strength or misalignment of components can introduce chaotic and unstable particle motion. All accelerators are prone to such non-linearities but the effects are even more significant in high intensity particle beams with the presence of space charge effects. This work aims to explore the non-linearities which arise in high intensity particle beams using the scaled experiment, IBEX. The IBEX experiment is a linear Paul trap that allows the transverse dynamics of a collection of trapped particles to be studied by mimicking the propagation through multiple quadrupole lattice periods whilst remaining stationary in the laboratory frame. IBEX is currently undergoing a non-linear upgrade with the goal of investigating Non-linear Integrable Optics (NIO) in order to improve our understanding and utilisation of high intensity particle beams.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB234  
About • paper received ※ 19 May 2021       paper accepted ※ 18 June 2021       issue date ※ 12 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB182 Automated Synchrotron Lattice Design and Optimisation Using a Multi-Objective Genetic Algorithm 616
 
  • X. Zhang, S.L. Sheehy
    The University of Melbourne, Melbourne, Victoria, Australia
  • E. Benedetto
    TERA, Novara, Italy
  • E. Benedetto
    CERN, Meyrin, Switzerland
 
  Funding: This work is partially supported by the Australian Government Research Training Program Scholarship.
As part of the Next Ion Medical Machine Study (NIMMS), we present a new method for designing synchrotron lattices. A step-wise approach was used to generate random lattice structures from a set of feedforward neural networks. These lattice designs are optimised by evolving the networks over many iterations with a multi-objective genetic algorithm (MOGA). The final set of solutions represent the most effi- cient and feasible lattices which satisfy the design constraints. It is up to the lattice designer to choose a design that best suits the intended application. The automated algorithm presented here randomly samples from all possible lattice layouts and reaches the global optimum over many iterations. The requirements of an efficient extraction scheme in hadron therapy synchrotrons impose stringent constraints on the lat- tice optical functions. Using this algorithm allows us to find the global optimum that is tailored to these constraints and to fully utilise the flexibilities provided by new technology.
 
poster icon Poster MOPAB182 [6.006 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB182  
About • paper received ※ 15 May 2021       paper accepted ※ 23 June 2021       issue date ※ 14 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB415 Failure Rates and Downtimes of Multi-Leaf Collimators in Indonesia 1248
 
  • G.S. Peiris, S.L. Sheehy
    The University of Melbourne, Melbourne, Victoria, Australia
  • M.F. Kasim, S.A. Pawiro
    University of Indonesia, Depok, Jawa Barat, Indonesia
 
  One of the greatest barriers to cancer treatment in Low and Middle-Income Countries (LMICs) is the access to Radiotherapy Linear Accelerators (LINACs). Not only are the LINACs complex, the harsh environment of LMICs cause frequent breakdowns resulting in downtimes ranging from days to months. Recent research has identified a disparity between LMICs and High Income Countries (HICs) and determined the Multi-Leaf Collimator (MLC) as a component needing re-evaluation. The MLC causes over 30% of the problems in RT LINACs, but the modes of failure and quantify the extent of the damage done are yet to be quantified. Using data from across Indonesia, we show the pathways to failure of RT Machines and frequency of breakdowns over time. A component of the MLC needs to be replaced every 9.98 faults per 1000 patients treated and the MLC itself breaks down on average every 36±1.8 days. When comparing the downtime by leaf width, the data shows 5mm leaves contribute 18.27±6.5% to all breakdowns while 10mm makes up 15.87±4.3%. These results outline the need to reassess the current generation of RT LINACs and ultimately work towards guiding future designs to be robust enough for all environments.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB415  
About • paper received ※ 19 May 2021       paper accepted ※ 09 June 2021       issue date ※ 16 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB417 Preliminary Study of a Large Energy Acceptance FFA Beam Delivery System for Particle Therapy 1256
 
  • J.S.L. Yap, E.R. Higgins, S.L. Sheehy
    The University of Melbourne, Melbourne, Victoria, Australia
 
  The availability and use of ion beams for radiotherapy has grown significantly, led by technological developments to exploit the dosimetric advantages offered by charged particles. The benefits of particle therapy (PT) are well identified however its utilisation is still limited by high facility costs and technological challenges. A possibility to address both of these can be considered by improvements to the beam delivery system (BDS). Existing beamlines and gantries transport beams with a momentum range of ±1% and consequently, adjustments in depth or beam energy require all the magnetic fields to be changed. The speed to switch energies is a limiting constraint of the BDS and a determinant of the overall treatment time. A novel concept using fixed field alternating gradient (FFA) optics enables a large energy acceptance (LEA) as beams of varying energies can traverse the beamline at multiple physical positions given the same magnetic field. This presents the potential to provide faster, higher quality treatments at lower costs, with the capability to deliver advanced PT techniques such as multi-ion therapy. We explore the applicability and benefits of a LEA BDS.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB417  
About • paper received ※ 18 May 2021       paper accepted ※ 27 July 2021       issue date ※ 15 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB402 Review of Technologies for Ion Therapy Accelerators 2465
 
  • H.X.Q. Norman, R.B. Appleby, A.F. Steinberg
    UMAN, Manchester, United Kingdom
  • E. Benedetto
    TERA, Novara, Italy
  • E. Benedetto, M. Sapinski
    CERN, Meyrin, Switzerland
  • H.L. Owen
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • H.L. Owen
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • M. Sapinski
    GSI, Darmstadt, Germany
  • S.L. Sheehy
    The University of Melbourne, Melbourne, Victoria, Australia
 
  Cancer therapy using protons and heavier ions such as carbon has demonstrated advantages over other radiotherapy treatments. To bring about the next generation of clinical facilities, the requirements are likely to reduce the footprint, obtain beam intensities above 1E10 particles per spill, and achieve faster extraction for more rapid, flexible treatment. This review follows the technical development of ion therapy, discussing how machine parameters have evolved, as well as trends emerging in technologies for novel treatments such as FLASH. To conclude, the future prospects of ion therapy accelerators are evaluated.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB402  
About • paper received ※ 19 May 2021       paper accepted ※ 28 July 2021       issue date ※ 24 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB374 The Southern Hemisphere’s First X-Band Radio-Frequency Test Facility at the University of Melbourne 3588
 
  • M. Volpi, R.P. Rassool, S.L. Sheehy, G. Taylor, S.D. Williams
    The University of Melbourne, Melbourne, Victoria, Australia
  • M.J. Boland
    CLS, Saskatoon, Saskatchewan, Canada
  • M.J. Boland
    University of Saskatchewan, Saskatoon, Canada
  • N. Catalán Lasheras, S. Gonzalez Anton, G. McMonagle, S. Stapnes, W. Wuensch
    CERN, Meyrin, Switzerland
  • R.T. Dowd, K. Zingre
    AS - ANSTO, Clayton, Australia
 
  The first Southern Hemisphere X-band Laboratory for Accelerators and Beams (X-LAB) is under construction at the University of Melbourne, and it will operate CERN X-band test stand containing two 12GHz 6MW klystron amplifiers. By power combination through hybrid couplers and the use of pulse compressors, up to 50 MW of peak power can be sent to any of 2 test slots at pulse repetition rates up to 400 Hz. The test stand is dedicated to RF conditioning and testing CLIC’s high gradient accelerating structures beyond 100 MV/m. It will also form the basis for developing a compact accelerator for medical applications, such as radiotherapy and compact light sources. Australian researchers working as part of a collaboration between the University of Melbourne, international universities, national industries, the Australian Synchrotron -ANSTO, Canadian Light Source and the CERN believe that creating a laboratory for novel accelerator research in Australia could drive technological and medical innovation.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB374  
About • paper received ※ 18 May 2021       paper accepted ※ 06 July 2021       issue date ※ 30 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)