Author: Hoffstaetter, G.H.
Paper Title Page
MOPAB216 20-24 GeV FFA CEBAF Energy Upgrade 715
 
  • S.A. Bogacz, J.F. Benesch, R.M. Bodenstein, B.R. Gamage, G.A. Krafft, V.S. Morozov, Y. Roblin
    JLab, Newport News, Virginia, USA
  • J.S. Berg, S.J. Brooks, D. Trbojevic
    BNL, Upton, New York, USA
  • D. Douglas
    Douglas Consulting, York, Virginia, USA
  • G.H. Hoffstaetter
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  Funding: This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under contract DE-AC05-06OR23177
A proposal was formulated to increase the CEBAF energy from the present 12 GeV to 20-24 GeV by replacing the highest-energy arcs with Fixed Field Alternating Gradient (FFA) arcs. The new pair of arcs would provide six or seven new beam passes, going through this magnet array, allowing the energy to be nearly doubled using the existing CEBAF SRF cavity system. One of the immediate accelerator design tasks is to develop a proof-of-principle FFA arc magnet lattice that would support simultaneous transport of 6-7 passes with energies spanning a factor of two. We also examine the possibility of using combined function magnets to configure a cascade, six-way beam split switchyard. Finally, a novel multi-pass linac optics based on a weakly focusing lattice is being explored.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB216  
About • paper received ※ 19 May 2021       paper accepted ※ 02 June 2021       issue date ※ 29 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB254 Measurement of Horizontal Beam Size Using Sextupole Magnets 802
 
  • J.A. Crittenden, K.E. Deitrick, H.X. Duan, G.H. Hoffstaetter, V. Khachatryan, D. Sagan
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  Funding: This work is supported by National Science Foundation award number DMR-1829070.
The quadratic dependence of sextupole fields on position results in a beam-size-dependent kick on a beam traversing a sextupole magnet. A change in sextupole strength changes the closed orbit and the tune of the beam in a storage ring. Measuring both therefore allows conclusions about the beam size in the sextupole. Here we derive the pertinent formula and discuss the applicability to storage rings. In particular we investigate the measurement accuracy that can be achieved at the Cornell High Energy Synchrotron Source. The Cornell Electron-positron Storage Ring underwent a major upgrade in 2018 with the goal of reducing the emittance by a factor of four. A variety of beam size measurement methods have been developed to monitor the positron beam size, including visible synchrotron light and interferometry. We investigate the sensitivity of the sextupole method and compare to other measurement techniques. The design horizontal emittance of the 6-GeV positron beam is about 30 nm-rad with typical beam sizes of about 1 mm, setting the scale for the required accuracy in the beam-size measurement.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB254  
About • paper received ※ 19 May 2021       paper accepted ※ 22 June 2021       issue date ※ 01 September 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB028 Permanent Magnets Future Electron Ion Colliders at RHIC and LHeC 1401
 
  • D. Trbojevic, S.J. Brooks, V. Litvinenko, T. Roser
    BNL, Upton, New York, USA
  • G.H. Hoffstaetter
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • V. Litvinenko
    Stony Brook University, Stony Brook, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy.
We present a new ’green energy’ approach to the Energy Recovery Linac (ERL) and Recirculating Linac Accelerators (RLA) for the future Electron Ion Colliders (EIC) using single beam line made of very strong focusing combined function permanent magnets and the Fixed Field Alternating Linear Gradient (FFA-LG) principle. We are basing our design on recent very successful commissioning results of the Cornell University and Brookhaven National Laboratory ERL Test Accelerator.
 
poster icon Poster TUPAB028 [2.720 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB028  
About • paper received ※ 17 May 2021       paper accepted ※ 27 May 2021       issue date ※ 30 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB036 The Accelerator Design Progress for EIC Strong Hadron Cooling 1424
 
  • E. Wang, S. Peggs, V. Ptitsyn, F.J. Willeke, W. Xu
    BNL, Upton, New York, USA
  • S.V. Benson
    JLab, Newport News, Virginia, USA
  • D. Douglas
    Douglas Consulting, York, Virginia, USA
  • C.M. Gulliford, G.H. Hoffstaetter
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • C.E. Mayes
    Xelera Research LLC, Ithaca, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy,
The Electron-Ion Collider will achieve a luminosity of 1034 cm-2 s−1 by incorporating strong hadron cooling to counteract hadron Intra-Beam Scattering, using a coherent electron cooling scheme. An accelerator will deliver the beams with key parameters, such as 1 nC bunch charge, and 1e-4 energy spread. The paper presents the design and beam dynamics simulation results. Methods to minimize beam noise, the challenges of the accelerator design, and the R&D topics being pursued are discussed.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB036  
About • paper received ※ 16 May 2021       paper accepted ※ 11 June 2021       issue date ※ 01 September 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB235 Dynamic Aperture Optimization in the EIC Electron Storage Ring with Two Interaction Points 1984
 
  • D. Marx, Y. Li, C. Montag, S. Tepikian, F.J. Willeke
    BNL, Upton, New York, USA
  • Y. Cai, Y.M. Nosochkov
    SLAC, Menlo Park, California, USA
  • G.H. Hoffstaetter, J.E. Unger
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 and by SLAC under Contract No. DE-AC02-76SF00515 with the U.S. Department of Energy.
In the Electron-Ion Collider (EIC), which is currently being designed for construction at Brookhaven National Laboratory, electrons from the electron storage ring will collide with hadrons, producing luminosities up to 1034 cm-2 s-1. The baseline design includes only one interaction point (IP), and optics have been found with a suitable dynamic aperture in each dimension. However, the EIC project asks for the option of a second IP. The strong focusing required at the IPs creates a very large natural chromaticity (about -125 in the vertical plane for the ring). Compensating this linear chromaticity while simultaneously controlling the nonlinear chromaticity to high order to achieve a sufficient momentum acceptance of 1% (10 σ) at 18 GeV is a considerable challenge. A scheme to compensate higher-order chromatic effects from 2 IPs by setting the phase advance between them does not, by itself, provide the required momentum acceptance for the EIC Electron Storage Ring. A thorough design of the nonlinear optics is underway to increase the momentum acceptance using multiple sextupole families, and the latest results are presented here.
 
poster icon Poster TUPAB235 [3.426 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB235  
About • paper received ※ 19 May 2021       paper accepted ※ 19 July 2021       issue date ※ 20 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB005 Design Status Update of the Electron-Ion Collider 2585
 
  • C. Montag, E.C. Aschenauer, G. Bassi, J. Beebe-Wang, J.S. Berg, M. Blaskiewicz, A. Blednykh, J.M. Brennan, S.J. Brooks, K.A. Brown, Z.A. Conway, K.A. Drees, A.V. Fedotov, W. Fischer, C. Folz, D.M. Gassner, X. Gu, R.C. Gupta, Y. Hao, A. Hershcovitch, C. Hetzel, D. Holmes, H. Huang, W.A. Jackson, J. Kewisch, Y. Li, C. Liu, H. Lovelace III, Y. Luo, M. Mapes, D. Marx, G.T. McIntyre, F. Méot, M.G. Minty, S.K. Nayak, R.B. Palmer, B. Parker, S. Peggs, B. Podobedov, V. Ptitsyn, V.H. Ranjbar, G. Robert-Demolaize, S. Seletskiy, V.V. Smaluk, K.S. Smith, S. Tepikian, R. Than, P. Thieberger, D. Trbojevic, N. Tsoupas, J.E. Tuozzolo, S. Verdú-Andrés, E. Wang, D. Weiss, F.J. Willeke, H. Witte, Q. Wu, W. Xu, A. Zaltsman, W. Zhang
    BNL, Upton, New York, USA
  • S.V. Benson, J.M. Grames, F. Lin, T.J. Michalski, V.S. Morozov, E.A. Nissen, J.P. Preble, R.A. Rimmer, T. Satogata, A. Seryi, M. Wiseman, W. Wittmer, Y. Zhang
    JLab, Newport News, Virginia, USA
  • Y. Cai, Y.M. Nosochkov, G. Stupakov, M.K. Sullivan
    SLAC, Menlo Park, California, USA
  • K.E. Deitrick, C.M. Gulliford, G.H. Hoffstaetter, J.E. Unger
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • E. Gianfelice-Wendt
    Fermilab, Batavia, Illinois, USA
  • T. Satogata
    ODU, Norfolk, Virginia, USA
  • D. Xu
    FRIB, East Lansing, Michigan, USA
 
  Funding: Work supported by BSA, LLC under Contract No. DE-SC0012704, by JSA, LLC under Contract No. DE-AC05-06OR23177, and by SLAC under Contract No. DE-AC02-76SF00515 with the U.S. Department of Energy.
The design of the electron-ion collider EIC to be constructed at Brookhaven National Laboratory has been continuously evolving towards a realistic and robust design that meets all the requirements set forth by the nuclear physics community in the White Paper. Over the past year activities have been focused on maturing the design, and on developing alternatives to mitigate risk. These include improvements of the interaction region design as well as modifications of the hadron ring vacuum system to accommodate the high average and peak beam currents. Beam dynamics studies have been performed to determine and optimize the dynamic aperture in the two collider rings and the beam-beam performance. We will present the EIC design with a focus on recent developments.
 
poster icon Poster WEPAB005 [2.095 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB005  
About • paper received ※ 14 May 2021       paper accepted ※ 22 June 2021       issue date ※ 16 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB007 Technology Spinoff and Lessons Learned from the 4-Turn ERL CBETA 3762
 
  • K.E. Deitrick, N. Banerjee, A.C. Bartnik, D.C. Burke, J.A. Crittenden, J. Dobbins, C.M. Gulliford, G.H. Hoffstaetter, Y. Li, W. Lou, P. Quigley, D. Sagan, K.W. Smolenski
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • J.S. Berg, S.J. Brooks, R.L. Hulsart, G.J. Mahler, F. Méot, R.J. Michnoff, S. Peggs, T. Roser, D. Trbojevic, N. Tsoupas
    BNL, Upton, New York, USA
  • T. Miyajima
    KEK, Ibaraki, Japan
 
  The Cornell-BNL ERL Test Accelerator (CBETA) developed several energy-saving measures: multi-turn energy recovery, low-loss superconducting radiofrequency (SRF) cavities, and permanent magnets. With green technology becoming imperative for new high-power accelerators, the lessons learned will be important for projects like the FCC-ee or new light sources, where spinoffs and lessons learned from CBETA are already considered for modern designs.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-THPAB007  
About • paper received ※ 20 May 2021       paper accepted ※ 05 July 2021       issue date ※ 12 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB009 A Hard X-Ray Compton Source at CBETA 3765
 
  • K.E. Deitrick, C. Franck, G.H. Hoffstaetter
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • J. Crone, H.L. Owen
    UMAN, Manchester, United Kingdom
  • G.A. Krafft
    JLab, Newport News, Virginia, USA
  • G.A. Krafft, B. Terzić
    ODU, Norfolk, Virginia, USA
  • B.D. Muratori, P.H. Williams
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • B.D. Muratori, P.H. Williams
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
 
  Inverse Compton scattering (ICS) holds the potential for future high flux, narrow bandwidth x-ray sources driven by high quality, high repetition rate electron beams. CBETA, the Cornell-BNL Energy recovery linac (ERL) Test Accelerator, is the world’s first superconducting radiofrequency multi-turn ERL, with a maximum energy of 150 MeV, capable of ICS production of x-rays above 400 keV. We present an update on the bypass design and anticipated parameters of a compact ICS source at CBETA. X-ray parameters from the CBETA ICS are compared to those of leading synchrotron radiation facilities, demonstrating that, above a few hundred keV, photon beams produced by ICS outperform those produced by undulators in term of flux and brilliance.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-THPAB009  
About • paper received ※ 19 May 2021       paper accepted ※ 06 July 2021       issue date ※ 10 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB174 T-BMT Spin Resonance Tracker Code for He3 with Six Snakes 4101
 
  • V.H. Ranjbar, H. Huang, Y. Luo, F. Méot, V. Ptitsyn
    BNL, Upton, New York, USA
  • G.H. Hoffstaetter, D. Sagan
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • F. Lin, V.S. Morozov
    JLab, Newport News, Virginia, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy .
Polarization lifetime for He3 using two and six snakes are studied using the T-BMT Spin Resonance Tracker code. This code integrates a reduced spinor form of the T-BMT equation including only several spin resonances and the kinematics of synchrotron motion. It was previously benchmarked against RHIC polarization lifetime under the two snake system *.
* Phys. Rev.Accel. Beams 22 (2019) 9, 091001
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-THPAB174  
About • paper received ※ 20 May 2021       paper accepted ※ 02 July 2021       issue date ※ 28 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB322 Transient Beam Loading in the CBETA Multi-Turn ERL 4422
 
  • N. Banerjee
    Enrico Fermi Institute, University of Chicago, Chicago, Illinois, USA
  • G.H. Hoffstaetter
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  Funding: This work was supported by NSF Grant No. DMR0807731, DOE Award No. DE-SC0012704, and NYSERDA Agreement No. 102192.
The Cornell-BNL ERL Test Accelerator (CBETA) is the first superconducting multi-turn ERL that has been commissioned at Cornell University in a low current mode. In this paper, we first discuss a new model of beam loading which is valid for the low injection energies used in CBETA. Using this model, we explore the effect of bunch patterns, beam turn-on, and turn-off transients on the fundamental mode of the 7-cell SRF cavities used in the main linac. In particular, we examine the operational constraints on the rf system at the design current of 40 mA.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-THPAB322  
About • paper received ※ 20 May 2021       paper accepted ※ 29 July 2021       issue date ※ 16 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)