Author: Hoffstaetter, G.H.
Paper Title Page
MOPAB216 20-24 GeV FFA CEBAF Energy Upgrade 715
 
  • S.A. Bogacz, J.F. Benesch, R.M. Bodenstein, B.R. Gamage, G.A. Krafft, V.S. Morozov, Y. Roblin
    JLab, Newport News, Virginia, USA
  • J.S. Berg, S.J. Brooks, D. Trbojevic
    BNL, Upton, New York, USA
  • D. Douglas
    Douglas Consulting, York, Virginia, USA
  • G.H. Hoffstaetter
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  Funding: This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under contract DE-AC05-06OR23177
A pro­posal was for­mu­lated to in­crease the CEBAF en­ergy from the pre­sent 12 GeV to 20-24 GeV by re­plac­ing the high­est-en­ergy arcs with Fixed Field Al­ter­nat­ing Gra­di­ent (FFA) arcs. The new pair of arcs would pro­vide six or seven new beam passes, going through this mag­net array, al­low­ing the en­ergy to be nearly dou­bled using the ex­ist­ing CEBAF SRF cav­ity sys­tem. One of the im­me­di­ate ac­cel­er­a­tor de­sign tasks is to de­velop a proof-of-prin­ci­ple FFA arc mag­net lat­tice that would sup­port si­mul­ta­ne­ous trans­port of 6-7 passes with en­er­gies span­ning a fac­tor of two. We also ex­am­ine the pos­si­bil­ity of using com­bined func­tion mag­nets to con­fig­ure a cas­cade, six-way beam split switch­yard. Fi­nally, a novel multi-pass linac op­tics based on a weakly fo­cus­ing lat­tice is being ex­plored.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB216  
About • paper received ※ 19 May 2021       paper accepted ※ 02 June 2021       issue date ※ 29 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB254 Measurement of Horizontal Beam Size Using Sextupole Magnets 802
 
  • J.A. Crittenden, K.E. Deitrick, H.X. Duan, G.H. Hoffstaetter, V. Khachatryan, D. Sagan
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  Funding: This work is supported by National Science Foundation award number DMR-1829070.
The qua­dratic de­pen­dence of sex­tu­pole fields on po­si­tion re­sults in a beam-size-de­pen­dent kick on a beam tra­vers­ing a sex­tu­pole mag­net. A change in sex­tu­pole strength changes the closed orbit and the tune of the beam in a stor­age ring. Mea­sur­ing both there­fore al­lows con­clu­sions about the beam size in the sex­tu­pole. Here we de­rive the per­ti­nent for­mula and dis­cuss the ap­plic­a­bil­ity to stor­age rings. In par­tic­u­lar we in­ves­ti­gate the mea­sure­ment ac­cu­racy that can be achieved at the Cor­nell High En­ergy Syn­chro­tron Source. The Cor­nell Elec­tron-positron Stor­age Ring un­der­went a major up­grade in 2018 with the goal of re­duc­ing the emit­tance by a fac­tor of four. A va­ri­ety of beam size mea­sure­ment meth­ods have been de­vel­oped to mon­i­tor the positron beam size, in­clud­ing vis­i­ble syn­chro­tron light and in­ter­fer­om­e­try. We in­ves­ti­gate the sen­si­tiv­ity of the sex­tu­pole method and com­pare to other mea­sure­ment tech­niques. The de­sign hor­i­zon­tal emit­tance of the 6-GeV positron beam is about 30 nm-rad with typ­i­cal beam sizes of about 1 mm, set­ting the scale for the re­quired ac­cu­racy in the beam-size mea­sure­ment.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB254  
About • paper received ※ 19 May 2021       paper accepted ※ 22 June 2021       issue date ※ 01 September 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB028 Permanent Magnets Future Electron Ion Colliders at RHIC and LHeC 1401
 
  • D. Trbojevic, S.J. Brooks, V. Litvinenko, T. Roser
    BNL, Upton, New York, USA
  • G.H. Hoffstaetter
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • V. Litvinenko
    Stony Brook University, Stony Brook, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy.
We pre­sent a new ’green en­ergy’ ap­proach to the En­ergy Re­cov­ery Linac (ERL) and Re­cir­cu­lat­ing Linac Ac­cel­er­a­tors (RLA) for the fu­ture Elec­tron Ion Col­lid­ers (EIC) using sin­gle beam line made of very strong fo­cus­ing com­bined func­tion per­ma­nent mag­nets and the Fixed Field Al­ter­nat­ing Lin­ear Gra­di­ent (FFA-LG) prin­ci­ple. We are bas­ing our de­sign on re­cent very suc­cess­ful com­mis­sion­ing re­sults of the Cor­nell Uni­ver­sity and Brookhaven Na­tional Lab­o­ra­tory ERL Test Ac­cel­er­a­tor.
 
poster icon Poster TUPAB028 [2.720 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB028  
About • paper received ※ 17 May 2021       paper accepted ※ 27 May 2021       issue date ※ 30 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB036 The Accelerator Design Progress for EIC Strong Hadron Cooling 1424
 
  • E. Wang, S. Peggs, V. Ptitsyn, F.J. Willeke, W. Xu
    BNL, Upton, New York, USA
  • S.V. Benson
    JLab, Newport News, Virginia, USA
  • D. Douglas
    Douglas Consulting, York, Virginia, USA
  • C.M. Gulliford, G.H. Hoffstaetter
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • C.E. Mayes
    Xelera Research LLC, Ithaca, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy,
The Elec­tron-Ion Col­lider will achieve a lu­mi­nos­ity of 1034 cm-2 s−1 by in­cor­po­rat­ing strong hadron cool­ing to coun­ter­act hadron In­tra-Beam Scat­ter­ing, using a co­her­ent elec­tron cool­ing scheme. An ac­cel­er­a­tor will de­liver the beams with key pa­ra­me­ters, such as 1 nC bunch charge, and 1e-4 en­ergy spread. The paper pre­sents the de­sign and beam dy­nam­ics sim­u­la­tion re­sults. Meth­ods to min­i­mize beam noise, the chal­lenges of the ac­cel­er­a­tor de­sign, and the R&D top­ics being pur­sued are dis­cussed.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB036  
About • paper received ※ 16 May 2021       paper accepted ※ 11 June 2021       issue date ※ 01 September 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB235 Dynamic Aperture Optimization in the EIC Electron Storage Ring with Two Interaction Points 1984
 
  • D. Marx, Y. Li, C. Montag, S. Tepikian, F.J. Willeke
    BNL, Upton, New York, USA
  • Y. Cai, Y.M. Nosochkov
    SLAC, Menlo Park, California, USA
  • G.H. Hoffstaetter, J.E. Unger
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 and by SLAC under Contract No. DE-AC02-76SF00515 with the U.S. Department of Energy.
In the Elec­tron-Ion Col­lider (EIC), which is cur­rently being de­signed for con­struc­tion at Brookhaven Na­tional Lab­o­ra­tory, elec­trons from the elec­tron stor­age ring will col­lide with hadrons, pro­duc­ing lu­mi­nosi­ties up to 1034 cm-2 s-1. The base­line de­sign in­cludes only one in­ter­ac­tion point (IP), and op­tics have been found with a suit­able dy­namic aper­ture in each di­men­sion. How­ever, the EIC pro­ject asks for the op­tion of a sec­ond IP. The strong fo­cus­ing re­quired at the IPs cre­ates a very large nat­ural chro­matic­ity (about -125 in the ver­ti­cal plane for the ring). Com­pen­sat­ing this lin­ear chro­matic­ity while si­mul­ta­ne­ously con­trol­ling the non­lin­ear chro­matic­ity to high order to achieve a suf­fi­cient mo­men­tum ac­cep­tance of 1% (10 σ) at 18 GeV is a con­sid­er­able chal­lenge. A scheme to com­pen­sate higher-or­der chro­matic ef­fects from 2 IPs by set­ting the phase ad­vance be­tween them does not, by it­self, pro­vide the re­quired mo­men­tum ac­cep­tance for the EIC Elec­tron Stor­age Ring. A thor­ough de­sign of the non­lin­ear op­tics is un­der­way to in­crease the mo­men­tum ac­cep­tance using mul­ti­ple sex­tu­pole fam­i­lies, and the lat­est re­sults are pre­sented here.
 
poster icon Poster TUPAB235 [3.426 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB235  
About • paper received ※ 19 May 2021       paper accepted ※ 19 July 2021       issue date ※ 20 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB005 Design Status Update of the Electron-Ion Collider 2585
 
  • C. Montag, E.C. Aschenauer, G. Bassi, J. Beebe-Wang, J.S. Berg, M. Blaskiewicz, A. Blednykh, J.M. Brennan, S.J. Brooks, K.A. Brown, Z.A. Conway, K.A. Drees, A.V. Fedotov, W. Fischer, C. Folz, D.M. Gassner, X. Gu, R.C. Gupta, Y. Hao, A. Hershcovitch, C. Hetzel, D. Holmes, H. Huang, W.A. Jackson, J. Kewisch, Y. Li, C. Liu, H. Lovelace III, Y. Luo, M. Mapes, D. Marx, G.T. McIntyre, F. Méot, M.G. Minty, S.K. Nayak, R.B. Palmer, B. Parker, S. Peggs, B. Podobedov, V. Ptitsyn, V.H. Ranjbar, G. Robert-Demolaize, S. Seletskiy, V.V. Smaluk, K.S. Smith, S. Tepikian, R. Than, P. Thieberger, D. Trbojevic, N. Tsoupas, J.E. Tuozzolo, S. Verdú-Andrés, E. Wang, D. Weiss, F.J. Willeke, H. Witte, Q. Wu, W. Xu, A. Zaltsman, W. Zhang
    BNL, Upton, New York, USA
  • S.V. Benson, J.M. Grames, F. Lin, T.J. Michalski, V.S. Morozov, E.A. Nissen, J.P. Preble, R.A. Rimmer, T. Satogata, A. Seryi, M. Wiseman, W. Wittmer, Y. Zhang
    JLab, Newport News, Virginia, USA
  • Y. Cai, Y.M. Nosochkov, G. Stupakov, M.K. Sullivan
    SLAC, Menlo Park, California, USA
  • K.E. Deitrick, C.M. Gulliford, G.H. Hoffstaetter, J.E. Unger
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • E. Gianfelice-Wendt
    Fermilab, Batavia, Illinois, USA
  • T. Satogata
    ODU, Norfolk, Virginia, USA
  • D. Xu
    FRIB, East Lansing, Michigan, USA
 
  Funding: Work supported by BSA, LLC under Contract No. DE-SC0012704, by JSA, LLC under Contract No. DE-AC05-06OR23177, and by SLAC under Contract No. DE-AC02-76SF00515 with the U.S. Department of Energy.
The de­sign of the elec­tron-ion col­lider EIC to be con­structed at Brookhaven Na­tional Lab­o­ra­tory has been con­tin­u­ously evolv­ing to­wards a re­al­is­tic and ro­bust de­sign that meets all the re­quire­ments set forth by the nu­clear physics com­mu­nity in the White Paper. Over the past year ac­tiv­i­ties have been fo­cused on ma­tur­ing the de­sign, and on de­vel­op­ing al­ter­na­tives to mit­i­gate risk. These in­clude im­prove­ments of the in­ter­ac­tion re­gion de­sign as well as mod­i­fi­ca­tions of the hadron ring vac­uum sys­tem to ac­com­mo­date the high av­er­age and peak beam cur­rents. Beam dy­nam­ics stud­ies have been per­formed to de­ter­mine and op­ti­mize the dy­namic aper­ture in the two col­lider rings and the beam-beam per­for­mance. We will pre­sent the EIC de­sign with a focus on re­cent de­vel­op­ments.
 
poster icon Poster WEPAB005 [2.095 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB005  
About • paper received ※ 14 May 2021       paper accepted ※ 22 June 2021       issue date ※ 16 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB007 Technology Spinoff and Lessons Learned from the 4-Turn ERL CBETA 3762
 
  • K.E. Deitrick, N. Banerjee, A.C. Bartnik, D.C. Burke, J.A. Crittenden, J. Dobbins, C.M. Gulliford, G.H. Hoffstaetter, Y. Li, W. Lou, P. Quigley, D. Sagan, K.W. Smolenski
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • J.S. Berg, S.J. Brooks, R.L. Hulsart, G.J. Mahler, F. Méot, R.J. Michnoff, S. Peggs, T. Roser, D. Trbojevic, N. Tsoupas
    BNL, Upton, New York, USA
  • T. Miyajima
    KEK, Ibaraki, Japan
 
  The Cor­nell-BNL ERL Test Ac­cel­er­a­tor (CBETA) de­vel­oped sev­eral en­ergy-sav­ing mea­sures: multi-turn en­ergy re­cov­ery, low-loss su­per­con­duct­ing ra­diofre­quency (SRF) cav­i­ties, and per­ma­nent mag­nets. With green tech­nol­ogy be­com­ing im­per­a­tive for new high-power ac­cel­er­a­tors, the lessons learned will be im­por­tant for pro­jects like the FCC-ee or new light sources, where spin­offs and lessons learned from CBETA are al­ready con­sid­ered for mod­ern de­signs.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-THPAB007  
About • paper received ※ 20 May 2021       paper accepted ※ 05 July 2021       issue date ※ 12 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB009 A Hard X-Ray Compton Source at CBETA 3765
 
  • K.E. Deitrick, C. Franck, G.H. Hoffstaetter
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • J. Crone, H.L. Owen
    UMAN, Manchester, United Kingdom
  • G.A. Krafft
    JLab, Newport News, Virginia, USA
  • G.A. Krafft, B. Terzić
    ODU, Norfolk, Virginia, USA
  • B.D. Muratori, P.H. Williams
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • B.D. Muratori, P.H. Williams
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
 
  In­verse Comp­ton scat­ter­ing (ICS) holds the po­ten­tial for fu­ture high flux, nar­row band­width x-ray sources dri­ven by high qual­ity, high rep­e­ti­tion rate elec­tron beams. CBETA, the Cor­nell-BNL En­ergy re­cov­ery linac (ERL) Test Ac­cel­er­a­tor, is the world’s first su­per­con­duct­ing ra­diofre­quency multi-turn ERL, with a max­i­mum en­ergy of 150 MeV, ca­pa­ble of ICS pro­duc­tion of x-rays above 400 keV. We pre­sent an up­date on the by­pass de­sign and an­tic­i­pated pa­ra­me­ters of a com­pact ICS source at CBETA. X-ray pa­ra­me­ters from the CBETA ICS are com­pared to those of lead­ing syn­chro­tron ra­di­a­tion fa­cil­i­ties, demon­strat­ing that, above a few hun­dred keV, pho­ton beams pro­duced by ICS out­per­form those pro­duced by un­du­la­tors in term of flux and bril­liance.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-THPAB009  
About • paper received ※ 19 May 2021       paper accepted ※ 06 July 2021       issue date ※ 10 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB174 T-BMT Spin Resonance Tracker Code for He3 with Six Snakes 4101
 
  • V.H. Ranjbar, H. Huang, Y. Luo, F. Méot, V. Ptitsyn
    BNL, Upton, New York, USA
  • G.H. Hoffstaetter, D. Sagan
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • F. Lin, V.S. Morozov
    JLab, Newport News, Virginia, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy .
Po­lar­iza­tion life­time for He3 using two and six snakes are stud­ied using the T-BMT Spin Res­o­nance Tracker code. This code in­te­grates a re­duced spinor form of the T-BMT equa­tion in­clud­ing only sev­eral spin res­o­nances and the kine­mat­ics of syn­chro­tron mo­tion. It was pre­vi­ously bench­marked against RHIC po­lar­iza­tion life­time under the two snake sys­tem *.
* Phys. Rev.Accel. Beams 22 (2019) 9, 091001
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-THPAB174  
About • paper received ※ 20 May 2021       paper accepted ※ 02 July 2021       issue date ※ 28 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB322 Transient Beam Loading in the CBETA Multi-Turn ERL 4422
 
  • N. Banerjee
    Enrico Fermi Institute, University of Chicago, Chicago, Illinois, USA
  • G.H. Hoffstaetter
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  Funding: This work was supported by NSF Grant No. DMR0807731, DOE Award No. DE-SC0012704, and NYSERDA Agreement No. 102192.
The Cor­nell-BNL ERL Test Ac­cel­er­a­tor (CBETA) is the first su­per­con­duct­ing multi-turn ERL that has been com­mis­sioned at Cor­nell Uni­ver­sity in a low cur­rent mode. In this paper, we first dis­cuss a new model of beam load­ing which is valid for the low in­jec­tion en­er­gies used in CBETA. Using this model, we ex­plore the ef­fect of bunch pat­terns, beam turn-on, and turn-off tran­sients on the fun­da­men­tal mode of the 7-cell SRF cav­i­ties used in the main linac. In par­tic­u­lar, we ex­am­ine the op­er­a­tional con­straints on the rf sys­tem at the de­sign cur­rent of 40 mA.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-THPAB322  
About • paper received ※ 20 May 2021       paper accepted ※ 29 July 2021       issue date ※ 16 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)