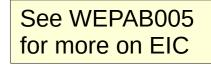
TUPAB235

Dynamic Aperture Optimization in the EIC Electron Storage Ring with Two Interaction Points

Daniel Marx (BNL)


Y. Li, C. Montag, S. Tepikian, F. Willeke (BNL) G.H. Hoffstaetter, J. Unger (Cornell) Y. Cai, Y. Nosochkov (SLAC) Electron-lon Collider

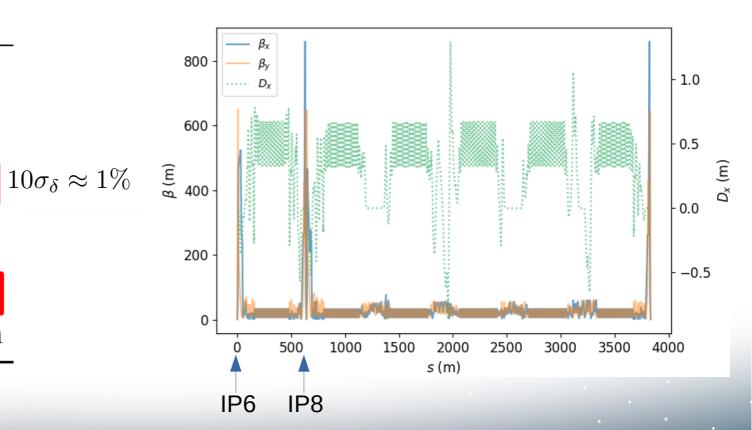
BROOKHAVEN

Jefferson Lab

U.S. DEPARTMENT OF Office of Science

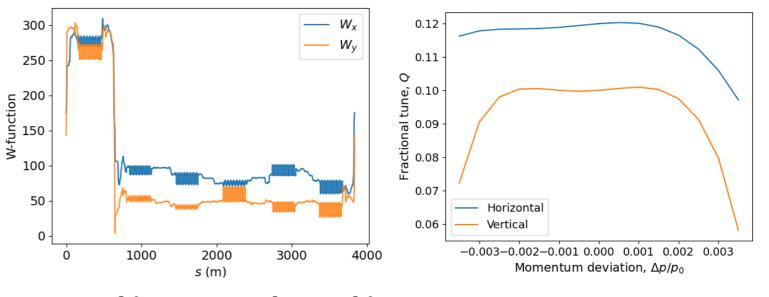
The Electron-Ion Collider (EIC)

- Will collide polarized electrons
 & hadrons
- Large range of CoM energies: 29 to 140 GeV
- Electron energies: 5 to 18 GeV in Electron Storage Ring (ESR)
- Considering option of second interaction point (IP)


Chromaticity & DA requirements for ESR

- 1) Set global linear chromaticity to +1 in both planes
- 2) $\pm 10\sigma$ dynamic aperture at nominal energy in both transverse planes
- 3) $\pm 10\sigma_{\delta}$ momentum acceptance

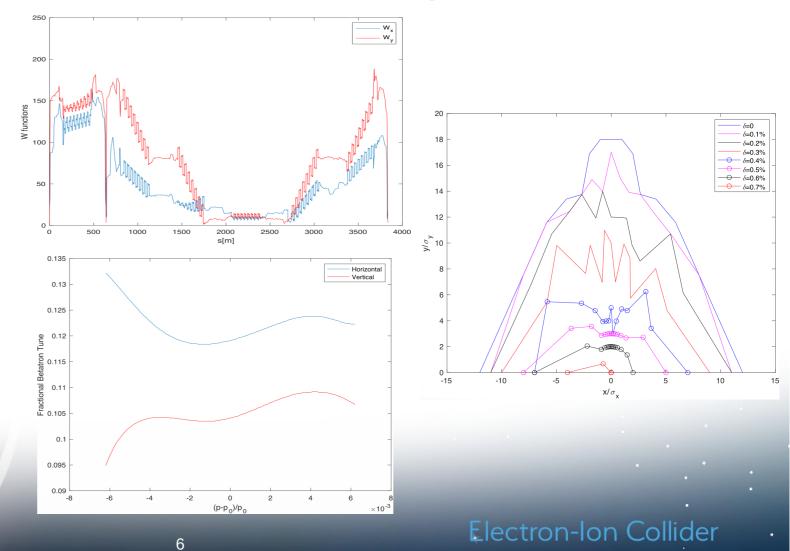
Each electron bunch is replaced every six minutes to mitigate depolarization, but charge variation must be kept small to reduce transient beam-beam effects


ESR: 18 GeV with 2 IPs

Parameter	Value
Beam energy	18 GeV
Circumference	3834 m
Emittance	30 nm
Energy spread, σ_{δ}	9.8×10^{-4}
Synchrotron tune, Q_s	0.056
Betatron tunes, Q_x/Q_y	51.12 / 42.1
Nat. chromaticity, ξ_x/ξ_y	-107 / -125
β_x^*/β_y^* at IP	0.42 / 0.05 m

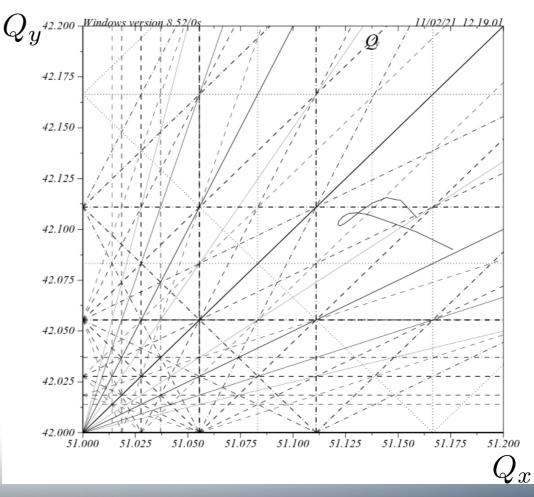
Set the phase between the IPs

- Phase between IPs is odd multiple of 90°
- Confine β -beat wave to arc between IPs
- Two global families of sextupoles
- Momentum acceptance still very small



$$b = rac{1}{eta} rac{\partial eta}{\partial \delta} \qquad \qquad a = rac{\partial lpha}{\partial \delta} - rac{lpha}{eta} rac{\partial eta}{\partial \delta}$$

$$W = \sqrt{a^2 + b^2}$$


Increasing the momentum acceptance

- Use fourteen independent families of sextupoles in total
- Solution obtained through combination of numerical optimization & manual adjustment
- Momentum acceptance of ±0.7% obtained

Synchrobetatron resonances

- Further optimization of tune function did not increase momentum acceptance
- Appear to be limited by synchrobetatron resonances, especially $Q_y 2Q_s = p$
- Shifting nominal tunes a small amount away from this resonance helps

Conclusion & outlook

- ESR lattice at 18 GeV with 2 IPs is very challenging
- Significant progress made in extending momentum acceptance, although ±1% goal not yet reached
- Currently updating IRs and straight sections
- Results presented here do not take into account errors & misalignments

Live poster presentation: Tuesday 25 May

Work supported by Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 and by SLAC under Contract No. DE-AC02-76SF00515 with the U.S. Department of Energy