Author: Franqueira Ximenes, R.
Paper Title Page
WEPAB361 New Generation CERN LHC Injection Dump - Assembly and Installation (TDIS) 3548
 
  • D. Carbajo Perez, E. Berthomé, C. Bertone, N. Biancacci, C. Bracco, G. Bregliozzi, B. Bulat, C. Cadiou, M. Calviani, G. Cattenoz, A. Cherif, P. Costa Pinto, A. Dallocchio, M. Di Castro, P. Fessia, M.I. Frankl, R. Franqueira Ximenes, J.-F. Fuchs, H. Garcia Gavela, J.-M. Geisser, L. Gentini, S.S. Gilardoni, M.A. Gonzalez De La Aleja Cabana, J.L. Grenard, J.M. Heredia, S. Joly, A. Lechner, J. Lendaro, J. Maestre, E. Page, M. Perez Ornedo, A. Perillo-Marcone, D. Pugnat, E. Rigutto, B. Salvant, A. Sapountzis, K. Scibor, R. Seidenbinder, J. Sola Merino, M. Taborelli, E. Urrutia, A. Vieille, C. Vollinger, C. Yin Vallgren
    CERN, Geneva, Switzerland
 
  Funding: Work supported by the Hilumi Project
During CERN’s LS2, several upgrades were performed to beam intercepting devices in the framework of the HL-LHC Project. Upgraded equipment includes two internal beam dumps (TDIS) intended for machine protection located at the injection points from the SPS to the LHC. These two devices have been assembled, tested, and installed around LHC Point 2 and Point 8 and are currently ready to get commissioned with the beam. They are 5.8m-long, three-module-segmented vacuum chambers, with large aperture to accommodate the injected and circulating beam and equipped with absorbing materials, These comprise graphite and higher Z alloys that are embedded on sub-assemblies reinforced with back-stiffeners made of TZM. The current contribution covers three main matters. First, it details the TDIS design and its key technical features. The second topic discussed is the outcome of an experiment where a prototype module was tested under high-energy beam impacts at CERN’s HiRadMat facility. To conclude it is presented the return of experience from the pre-series construction, validation and installation in the LHC tunnel.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB361  
About • paper received ※ 18 May 2021       paper accepted ※ 11 June 2021       issue date ※ 17 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB364 Third-Generation CERN n_TOF Spallation Target: Final Design and Examinations of Irradiated Prototype 3555
 
  • R. Esposito, O. Aberle, M. Calviani, T. Coiffet, M.D. Crouvizier, R. Franqueira Ximenes, V. Maire, A.T. Perez Fontenla, M.A. Timmins
    CERN, Geneva, Switzerland
 
  The new neutron spallation target for the CERN neutron Time-Of-Flight (n_TOF) facility is based on a nitrogen-cooled Pb core impacted by short high-intensity proton beam pulses. An extensive material characterization campaign has been carried out to define the constitutive behavior of lead and assess its response under pulsed proton beam irradiation. The activities carried out include a beam irradiation test in the CERN HiRadMat facility. The tests and inspections performed show a robust behavior of the core material during operation and prominent static hardening recovery already at room temperature.  
poster icon Poster WEPAB364 [1.011 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB364  
About • paper received ※ 18 May 2021       paper accepted ※ 11 June 2021       issue date ※ 20 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB365 CERN BDF Prototype Target Operation, Removal and Autopsy Steps 3559
 
  • R. Franqueira Ximenes, O. Aberle, C. Ahdida, P. Avigni, M. Battistin, L. Bianchi, L.R. Buonocore, S. Burger, J. Busom, M. Calviani, J.P. Canhoto Espadanal, M. Casolino, M. Di Castro, M.A. Fraser, S.S. Gilardoni, S. Girod, J.L. Grenard, D. Grenier, M. Guinchard, R. Jacobsson, M. Lamont, E. Lopez Sola, A. Ortega Rolo, A. Perillo-Marcone, Y. Pira, B. Riffaud, V. Vlachoudis, L. Zuccalli
    CERN, Geneva, Switzerland
 
  The Beam Dump Facility (BDF), currently in the study phase, is a proposed general-purpose fixed target facility at CERN. Initially will host the Search for Hidden Particles (SHiP) experiment, intended to investigate the origin of dark matter and other weakly interacting particles. The BDF particle production target is located at the core of the facility and is employed to fully absorb the high intensity (400 GeV/c) Super Proton Synchrotron (SPS) beam. To validate the design of the production target, a downscaled prototype was tested with the beam at CERN in 2018 in the North Area primary area in a dedicated test at 35 kW average beam power. This contribution details the BDF prototype target operation, fully remote removal intervention, and foreseen post-irradiation examination plans.  
poster icon Poster WEPAB365 [1.691 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB365  
About • paper received ※ 18 May 2021       paper accepted ※ 15 June 2021       issue date ※ 25 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB366 Towards the Last Stages of the CERN’s AD-Target Area Consolidation Project and Recommissioning Plans to Resume Operation 3563
 
  • C. Torregrosa, C. Ahdida, A. Bouvard, A. Broche, S. Burger, M.E.J. Butcher, M. Calviani, V. Clerc, A. De Macedo, S. De Man, F.A. Deslande, M. Di Castro, T. Dobers, T. Feniet, R. Ferriere, E. Fornasiere, R. Franqueira Ximenes, T.J. Giles, J.L. Grenard, E. Grenier-Boley, G. Gräwer, M. Guinchard, M.D. Jedrychowski, K. Kershaw, B. Lefort, E. Lopez Sola, J.M. Martin Ruiz, A. Martínez Sellés, G. Matulenaite, C.Y. Mucher, A. Newborough, M. Perez Ornedo, E. Perez-Duenas, A. Perillo-Marcone, L. Ponce, N. Solieri, M.B. Szewczyk, P.A. Thonet, M.A. Timmins, A. Tursun, W. Van den Broucke, F.M. Velotti, C. Vendeuvre, V. Vlachoudis
    CERN, Meyrin, Switzerland
  • J.C. Espadanal
    LIP, Lisboa, Portugal
 
  Antiprotons are produced at CERN at the Antiproton Decelerator (AD) Target Area by impacting 26 GeV/c proton beams onto a fixed target. Further collection, momentum selection, and transport of the secondary particles - including antiprotons - towards the AD ring is realised by a 400 kA pulsed magnetic horn and a set of magnetic dipoles and quadrupoles. A major consolidation of the area - in operation since the 80s - has taken place during the CERN Long Shutdown 2 (2019-2021). Among other activities, such upgrade included: (i) Installation of a new air-cooled target design and manufacturing of a new batch of magnetic horns, including a surface pulsing test-bench for their validation and fine-tuning (ii) Installation of a new positioning and maintenance system for the target and horn (iii) Refurbishment and decontamination of the Target Area and its equipment, (iv) Construction of a new surface service building to house new nuclear ventilation systems. This contribution presents an overview of such activities and lesson learnt. In addition, it provides the latest results from refractory metals R&D for the antiproton target and a summary of the recommissioning and optimization plans.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB366  
About • paper received ※ 18 May 2021       paper accepted ※ 21 June 2021       issue date ※ 01 September 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB368 Sigraflex® Studies for LHC CERN Beam Dump: Summary and Perspective 3571
 
  • J.M. Heredia, M. Calviani, R. Franqueira Ximenes, D. Grenier, K. Kershaw, A. Lechner, P. Andreu-Muñoz, F.-X. Nuiry, A. Perillo-Marcone, V. Rizzoglio, C. Torregrosa
    CERN, Meyrin, Switzerland
  • A. Alvaro
    SINTEF, Trondheim, Norway
  • F. Berto, S. Solfiti
    NTNU, Trondheim, Norway
 
  The Large Hadron Collider (LHC) beam dump (TDE) is essential for safe and reliable operation of the collider. It absorbs particles extracted from the accelerator whenever required. The original design of the TDE dates from the mid 2000 and it is constituted of an eight-meter-long cylindrical stainless-steel tube, filled with low-Z carbon-based materials from different grades and densities. The Sigraflex®, an expanded low-density graphite, is employed in the middle section of the TDE core. Due to unexpected behaviour observed in the past LHC runs, several major upgrades were recently implemented in order for the TDE to be ready for LHC Run3 (2021-2024), where up to 555 MJ beam energy is expected to be dumped every few hours. According simulations, temperatures in the Sigraflex core will reach locally up to 1500°C in the regular dump cases, and above 2300°C for failure scenarios. The objective of this contribution is to summarize the LS2 hardware upgrades and the plan for the evaluation of the Sigraflex performance during LHC Run3. This work will also detail the last experimental and numerical findings applied to the Sigraflex®, and possible alternative materials for the future.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB368  
About • paper received ※ 18 May 2021       paper accepted ※ 11 August 2021       issue date ※ 16 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)