Keyword: FPGA
Paper Title Other Keywords Page
TUPMP014 Digital Control System of High Precision Magnet Power Supply for SPring-8-II controls, feedback, power-supply, synchrotron-radiation 1259
 
  • C. Kondo, K. Fukami, S. Takano, T. Watanabe
    Japan Synchrotron Radiation Research Institute (JASRI), RIKEN SPring-8 Center, Hyogo, Japan
  • T. Fukui, H. Tanaka
    RIKEN SPring-8 Center, Sayo-cho, Sayo-gun, Hyogo, Japan
  • S. Nakazawa
    SES, Hyogo-pref., Japan
  • N. Nishimori
    QST, Tokai, Japan
  • C. Saji
    JASRI/SPring-8, Hyogo-ken, Japan
 
  For the SPring-8 upgrade plan, SPring-8-II, a variety of magnet power supplies (PS) from 10 W to larger than 100 kW with a high current stability of about 10 ppm (pk-pk, typ.) are required. In order to develop the PSs within a given time and budget, we plan to use a common control system based on a digital control technology that can be adopted for the variety and the high precision PSs. The system consists of a high-precision analog-digital converter (ADC) circuit and a field programmable gate array (FPGA). Since the precision of the ADC circuit determines the current stability of the PS, we first developed the ADC circuit of high accuracy of less than 10 ppm (pk-pk). A proportional-integral (PI) control logic and a digital pulse width modulation (PWM) function was implemented in the FPGA firmware. These functions can be easily modified for each power supply by a desktop computer. We prototyped a DC power supply equipped with the newly developed digital feedback control system and confirmed that the current fluctuation was suppressed to less than 10 ppm (pk-pk). In the presentation, we will report the current status and future perspective of our power supply development including the evaluation results of the new circuits and the power supply we have developed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPMP014  
About • paper received ※ 16 May 2019       paper accepted ※ 21 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMP027 Research and Design of Digital Magnet Power Supply Controller controls, power-supply, Ethernet, real-time 1297
 
  • Z.X. Shao, H. Gao, G. Liu, P. Liu, X.K. Sun, H.Y. Zhang
    USTC/NSRL, Hefei, Anhui, People’s Republic of China
 
  Funding: Supported by’the Fundamental Research Funds for the Central Universities’(WK2310000064)
Hefei Advanced Light Source (HALS) is the fourth-generation radiation light source in China which is under design. Ultra-low beam emittance requires higher performance of power supply system. The power supply controller is a key part of the power system. This article describes the design and testing of high-stability power controllers and fast corrector power supply controllers. A new controller architecture is proposed for the problems of the two controllers.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPMP027  
About • paper received ※ 29 April 2019       paper accepted ※ 18 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPGW008 Fiber Beam Loss Monitors at MAMI beam-losses, experiment, detector, electron 2477
 
  • M. Dehn, P. Achenbach, I. Beltschikow, O. Corell, P. Gülker, W. Lauth, M. Mauch
    IKP, Mainz, Germany
 
  Funding: Work supported by DFG (CRC 1044) and the German federal state of Rhineland-Palatinate
At the 14 MeV stage of the 1508 MeV cascaded racetrack microtron accelerator Mainz Microtron (MAMI) fiber beam loss monitors with multi-anode photomultipliers (ma-PMTs) have been successfully tested. The combination of individual fibers for each recirculation beam pipe with ma-PMTs allows to detect beam losses turn by turn in the order of 10-4 or even lower which cannot be accomplished with the already existing beam diagnostics. This kind of beam loss monitor might be an alternative to ionisation chambers for the new Mainz Energy Recovering Superconducting Accelerator (MESA).
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPGW008  
About • paper received ※ 14 May 2019       paper accepted ※ 21 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPGW072 Evaluation of Pilot-Tone Calibration Based BPM System at Elettra Sincrotrone Trieste electronics, electron, injection, diagnostics 2638
 
  • P. Leban, M. Žnidarčič
    I-Tech, Solkan, Slovenia
  • G. Brajnik, R. De Monte
    Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Italy
 
  Stable and reliable beam position measurement is of paramount importance for the present and future light sources. Stabilization with a pilot-tone technique was developed by Elettra Sincrotrone Trieste and supported in the commercial BPM electronics Libera Spark. Both system components (the pilot-tone front-end and BPM electronics) are controlled through a common software interface which is compatible with TANGO, EPICS and LabVIEW/MATLAB clients. The system provides a reliable self-diagnostics, cable and button diagnostics and drift compensation. This paper presents results from beam measurements under different environmental and beam conditions.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPGW072  
About • paper received ※ 13 May 2019       paper accepted ※ 21 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRB004 Sawtooth Generation and Regulation with a Single FPGA for TRIUMF’s ARIEL Prebuncher controls, LLRF, cavity, pick-up 2801
 
  • X.L. Fu, T. Au, K. Fong, Q. Zheng
    TRIUMF, Vancouver, Canada
 
  TRIUMF’s ARIEL prebuncher is powered by a sawtooth waveform which is the combination of an 11.79MHz, a 23.57MHz and a 35.36MHz components. The generation, control and regulation of these three components are all incorporated digitally inside a single FPGA. This FPGA can be standalone or inserted inside a VXI module. Commands and controls of these components can be directly through Ethernet, or indirectly through register-base or message-base VXI addresses.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPRB004  
About • paper received ※ 10 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRB016 Simulation of Quench Detection Algorithms for Helmholtz Zentrum Berlin SRF Cavities cavity, SRF, LLRF, controls 2834
 
  • P. Echevarria, A. Neumann, A. Ushakov
    HZB, Berlin, Germany
  • B. Garcia
    UPV-EHU, Leioa, Spain
  • J. Jugo
    University of the Basque Country, Faculty of Science and Technology, Bilbao, Spain
 
  The Helmholtz Zentrum Berlin is carrying out two accelerator projects which make use of high gradient SRF cavities: BERLinPro* and BESSY-VSR**. In both projects, a prompt detection of a quench is crucial to avoid damages in the cryomodules and cavities themselves. In this paper, the response of real time estimation of the cavity parameters*** using the transmitted and forward RF signals is simulated, in order to perform the quench detection. The time response of the estimated half bandwidth is compared with the dissipated power in the cavity walls for the different type of SRF cavities used in both projects, i.e., BERLinPro’s photoinjector, booster and linac, and BESSY-VSR 1.5 GHz and 1.75 GHz cavities. As an intermediate step prior to the implementation in an mTCA.4 system together with the LLRF control and test with a real cavity, the algorithm has been implemented using a National Instruments FPGA board to check the its proper behavior.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPRB016  
About • paper received ※ 16 April 2019       paper accepted ※ 21 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRB004 Hardware and Firmware Development for Enhanced Orbit Diagnostics at the Australian Synchrotron controls, EPICS, diagnostics, feedback 3802
 
  • S. Chen, R.B. Hogan, A. Michalczyk, A.C. Starritt, Y.E. Tan
    AS - ANSTO, Clayton, Australia
 
  The Enhanced Orbit Diagnostic (EOD) features will be an expansion to the existing Fast Orbit Feedback (FOFB) system that is currently in operation. The new system will add the capability of online cor-rector-to-position response matrix calculation; this will significantly reduce the required measurement time. The new features will allow the injection of PRBS noise or sinusoidal signals into correctors, to characterise and monitor the FOFB system’s parameters and performance and track it over time. The system will be built based on a Xilinx ZYNQ Sys-tem-on-Module (SOM) mounted on an in-house designed motherboard to which the existing FOFB daughter board is plugged into.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPRB004  
About • paper received ※ 15 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRB005 Orbit Feedback and Beam Stability at the Australian Synchrotron feedback, controls, operation, EPICS 3805
 
  • A.C. Starritt, A. Pozar, Y.E. Tan
    AS - ANSTO, Clayton, Australia
 
  The Australian Synchrotron (AS) is a 3rd generation light source which has been in operation since 2006. Measurement of the storage ring’s beam position is provided by 98 beam position monitors, and corrections can be applied using 42 horizontal and 56 vertical slow corrector magnets, and 42 horizontal and 42 vertical fast corrector magnets. This paper provides a background describing the feedback strategies adopted at the AS leading to the current integrated orbit feedback system, together with a description of the beam position analyse techniques currently in use. It will also highlight some of the issues encountered with the system and how they were overcome. The paper also describes planned improvements, including the enhanced orbit diagnostics functionality we are intending to introduce in the next 12 months.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPRB005  
About • paper received ※ 14 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRB021 Automatic Loop for Carrier Suppression in Attosecond RF Receivers controls, operation, electron, electronics 3847
 
  • U. Mavrič, M. Hoffmann, F. Ludwig, H. Schlarb, L. Springer
    DESY, Hamburg, Germany
 
  The carrier suppression interferometer method can be used as a radio receiver architecture which allows for detection of RF signals in the attosecond range. The carrier suppression scheme requires an automatic carrier suppression circuit which provides stable operation of the RF receiver in the best operating point. In the poster we investigate the requirements for such an algorithm, evaluate the achievable closed loop bandwidth and the side effects on the overall-performance. In addition we apply the carrier tracking to simplify and automate the characterization of various electronic phase shifters and attenuators in the as-range  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPRB021  
About • paper received ※ 13 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRB030 Novel FPGA-based Instrumentation for Personnel Safety Systems in Particle Accelerator Facility controls, radiation, monitoring, operation 3872
 
  • S. Pioli, M. Belli, M.M. Beretta, B. Buonomo, P. Ciambrone, D.G.C. Di Giulio, O. Frasciello, A. Variola
    INFN/LNF, Frascati, Italy
  • P. Valente
    INFN-Roma, Roma, Italy
 
  Personnel safety system for particle accelerator facility involves different devices to monitor gates, shielding doors, dosimetry stations, search and emergency buttons. In order to achieve the proper reliability, fail-safe and fail-proof capabilities, these systems are developed compliant with safety standards (like the IEC-61508 on ’Functional Safety’, ANSI N43.1 ’Radiation Safety for the design and operation of Particle Accelerator’ and NCRP report 88) involving stable technologies like electro-mechnaical relays and, recently, PLC. As part of the Singularity project at Frascati National Laboratories of INFN, this work will report benchmark of a new FPGA-based system from the design to the validation phase of the prototype currently operating as personnel safety system at the Beam Test Facility (BTF) of Dafne facility. This novel instrument is capable of: devices monitoring in real-time at 1 kHz, dual modular redundancy, fail-safe and fail-proof, multi-node distributed solution on optical link, radiation damage resistance and compliant with IEC-61508, ANSI N43.1 and NCRP report 88. The aim of this FPGA-based system is to illustrate the feasibility of FPGA technology in the field of personnel safety for particle accelerator in order to take advantage of a fully digital system integrated with facility control system, evaluate the related reliability and availability and realize a standard, scalable and flexible hardware solution also for other fields with similar requirements like machine protection systems.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPRB030  
About • paper received ※ 30 April 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRB041 Design a Precise Stability Controller for High Power Pulse Modulator Based on FPGA controls, FEL, linac, experiment 3900
 
  • Y.F. Liu, Z.H. Chen, M. Gu, J. Tong, Y. Wu, Q. Yuan, X.X. Zhou
    SINAP, Shanghai, People’s Republic of China
 
  Shanghai Soft X-ray Free Electron Laser (SXFEL) facility is under testing at Shanghai Institute of Applied Physics (SINAP), Chinese Academy of Sciences. The stability of RF system is one of the major factors to get great beam performance. It is mainly determined by klystron modulators power supply. The beam voltage of the LINAC klystron modulator, which is the pulsed power source of the RF amplifier, is directly affecting the RF amplitude and phase. This paper shows the suitable upgrade scheme of the modulator power supply and design considerations for the stability improvement of modulator power supply for Shanghai SXFEL. We present a real time feedback control system of LINAC pulse modulator to improve pulse to pulse amplitude stability. The feedback control system is based on the principle of embedded FPGA techniques. The control system consists of an embedded NIOS II processor, a High resolution ADC and an upper computer. The NIOS II processor manage on chip FIFO, ADC, IRQ, and Ethernet. The relevant experiments indicate that the feedback control strategy reaches required function. It is useful to improve the stability of existing modulator power supply.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPRB041  
About • paper received ※ 21 April 2019       paper accepted ※ 21 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRB042 Stability Research Progress on High-power Pulse Modulator for SXFEL-UF controls, feedback, FEL, network 3904
 
  • Q. Yuan, M. Gu, Y.F. Liu, J. Tong, Y. Wu
    SINAP, Shanghai, People’s Republic of China
 
  Funding: Supported by the National Natural Science Foundation of China(11675250)
Abstract: SXFEL-UF(Shanghai Soft X-ray Free Electron Laser User Facility) under construction presently demands higher energy stability. Stability of pulse modulator feeding power for klystron plays an utmost important role in energy stability and occupy dominant factors in bringing influences in stability of RF power. Presently, stability of high-power pulse modulator of LINAC (Linear Accelerator) is on the level of 0.1% to 0.05% usually. In order to meet the higher stability requirements, it is very necessary for close-loop feedback control techniques instead of traditional open-loop to be applied in the modulator design. The stability controller adopts double control-loops techniques which feedback signals are respectively from PFN(Pulse Forming Network) and pulse transformer in oil tank. In addition, the paper also introduces recent progress on high stability CCPS research(Capacitor Charging Power Supply), which brings direct impact on the stability of modulator. In comparison with the former close-loop design, high stability CCPS design takes the overall modulator stability into full consideration. And the feedback control algorithm utilized to adjust PWMs for full bridge switch is implemented in the CCPS controller directly rather than modulator controller independent of CCPS. It is expected to obtain 0.01% stability by taking the above measures.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPRB042  
About • paper received ※ 06 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRB044 LLRF Control System for RF GUN at SXFEL Test Facility gun, controls, LLRF, FEL 3912
 
  • L. Li, Q. Gu, Y.J. Liu, C.C. Xiao, J.Q. Zhang
    SINAP, Shanghai, People’s Republic of China
  • Y.F. Liu, Z. Wang
    SARI-CAS, Pudong, Shanghai, People’s Republic of China
 
  A Soft X-ray Free Electron Laser Test Facility (SXFEL-TF) based on normal conducting linear accelerator was constructed at the Shanghai Synchrotron Radiation Facility (SSRF) campus by a joint team of Shanghai Institute of Applied Physics and Tsinghua University. It consists of multiple Radio Frequency (RF) stations with standing wave cavity (RF Gun) and traveling wave accelerating structures working at different frequencies. Low Level Radio Frequency (LLRF) system is used to measure the RF field in the cavities or structures and correct the fluctuation in RF fields with pulse-to-pulse feedback controllers. This paper describes the hardware and architecture of the LLRF system for electromagnetic filed stabilization inside the radio frequency electron gun, in the SXFEL-TF. A complete control path has be presented, including RF front-end board, I/Q detector and feedback controller. Algorithms used to stabilize the RF field have been presented as well as the software environment used to provide remote access to the control device. Finally, the performance of the LLRF system that was realized in the beam commissioning is presented and meets the high accuracy requirements.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPRB044  
About • paper received ※ 23 April 2019       paper accepted ※ 21 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPTS054 A Novel Approach to Triggering and Beam Synchronous Data Acquisition controls, interface, EPICS, data-acquisition 4224
 
  • T. Šuštar
    Cosylab, Villigen, Switzerland
  • P. Bucher, G. Theidel
    PSI, Villigen PSI, Switzerland
  • R. Modic
    Cosy lab, Ljubljana, Slovenia
 
  SwissFEL, the new Free-Electron Laser facility is a 740 m long accelerator with the goal of providing pulses of light between 6 and 30 fs long at a wavelength of 1 to 7 Å at 100 Hz*. To support shot-to-shot photon diagnostic* and link the measurements to other measurements along the machine that belong to the same machine pulse, a new triggering and data acquisition system was developed. A new protocol was introduced which allows deterministic triggering, configuration and data transfer via one full-duplex optical connection. The measurement data is stamped with an unique pulse identifier, delivered from the SwisFEL Timing System**. A readout and control interface was developed to support data delivery to the Data Acquisition Dispatching Layer* and for controlling the system.
* Milne, et al., SwissFEL: The Swiss X-Ray Free-Electron Laser, Appl. Sci. 2017, 7(7), 720
** Kalantari, Biffiger, SwissFEL Timing System: First Opreational Experience, ICALEPC2017
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPTS054  
About • paper received ※ 15 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPTS060 Sirius Digital LLRF LLRF, cavity, controls, booster 4244
 
  • A. Salom, F. Pérez
    ALBA-CELLS Synchrotron, Cerdanyola del Vallès, Spain
  • R.H.A. Farias, F.K.G. Hoshino, A.P.B. Lima
    LNLS, Campinas, Brazil
 
  Sirius is a Synchrotron Light Source Facility based on a 4th generation low emittance storage ring. The facility is presently under construction in Campinas, Brazil, and comprises a 3 GeV electron storage ring, a full energy booster synchrotron and a 120 MeV linac. The booster RF system is based on a single 5-cell cavity driven by a 50 kW amplifier at 500MHz and is designed to operate at 2 Hz rate. The storage ring RF system will start with 1 normal conducting 7-cell cavity. In the final configuration, the system will comprise 2 superconducting cavities, each one driven by a 240 kW RF amplifier. A digital LLRF system based on ALBA LLRF has been designed and commissioned to control 3 different types of cavities: 2 normal conducting single cell cavities, one multi-cell cavity driven by 2 amplifiers and one superconducting cavity driven by 4 amplifiers. The first LLRF System was installed and commissioned in the Sirius Booster in 2019. The performance of the control loops with beam, together with other utilities of the system like automatic start-up, conditioning, fast interlocks and post-mortem analysis will be presented in this paper, as well as possible upgrades for the future  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPTS060  
About • paper received ※ 15 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)