Keyword: beam-losses
Paper Title Other Keywords Page
MOPMP029 Analysis on Bunch-by-Bunch Beam Losses at 6.5 TeV in the Large Hadron Collider luminosity, betatron, operation, collider 500
 
  • K. Paraschou, G. Iadarola, N. Karastathis, S. Kostoglou, Y. Papaphilippou, L. Sabato
    CERN, Geneva, Switzerland
  • S. Kostoglou
    National Technical University of Athens, Zografou, Greece
  • K. Paraschou
    AUTH, Thessaloniki, Greece
 
  In 2018, a large fraction of the physics data taking at the Large Hadron Collider has been performed with a beam energy of 6.5 TeV, the nominal bunch spacing of 25 ns and beta functions at the high luminosity interaction points of 30 cm. In order to maximize the integrated luminosity, the crossing angles are gradually reduced as the beam intensity reduces due to luminosity burn-off. In these conditions the beam lifetime is visibly affected by collective effects and in particular by beam-beam interaction and electron cloud effects. By analyzing the beam losses at a bunch-by-bunch level, it is possible to disentangle the contributions from different effects and to assess the impact on the losses of changes applied to the machine configuration.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPMP029  
About • paper received ※ 10 May 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMP036 Machine Protection Experience from Beam Tests with Crab Cavity Prototypes in the CERN SPS cavity, machine-protect, betatron, operation 520
 
  • B. Lindstrom, H. Bartosik, T. Bohl, A.C. Butterworth, R. Calaga, L.R. Carver, V. Kain, T.E. Levens, G. Papotti, R. Secondo, J.A. Uythoven, M. Valette, G. Vandoni, J. Wenninger, D. Wollmann, M. Zerlauth
    CERN, Meyrin, Switzerland
 
  Funding: Work supported by the High Luminosity LHC project.
Crab cavities (CCs) constitute a key component of the High Luminosity LHC (HL-LHC) project. In case of a failure, they can induce significant transverse beam offsets within tens of microseconds, necessitating a fast removal of the circulating beam to avoid damage to accelerator components due to losses from the displaced beam halo. In preparation for the final design to be employed in the LHC, a series of tests were conducted on prototype crab cavities installed in the Super Proton Synchrotron (SPS) at CERN. This paper summarizes the machine protection requirements and observations during the first tests of crab cavities with proton beams in the SPS. In addition, the machine protection implications for future SPS tests and for the use of such equipment in the HL-LHC are discussed.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPMP036  
About • paper received ※ 01 May 2019       paper accepted ※ 18 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPRB064 Precision Modelling of Energy Deposition in the LHC using BDSIM simulation, proton, detector, collimation 723
 
  • S.D. Walker, A. Abramov, S.T. Boogert, S.M. Gibson, L.J. Nevay, H. Pikhartova
    JAI, Egham, Surrey, United Kingdom
 
  A detailed model of the Large Hadron Collider (LHC) has been built using Beam Delivery Simulation (BDSIM) for studying beam loss patterns and is presented and discussed in this paper. BDSIM is a program which builds a Geant4 accelerator model from generic components bridging accelerator tracking routines and particle physics to seamlessly simulate the traversal of particles and any subsequent energy deposition in particle accelerators. The LHC model described here has been further refined with additional features to improve the accuracy of the model, including specific component geometries, tunnel geometry, and more. BDSIM has been extended so that more meaningful comparisons with other simulations and data can be made. Firstly, BDSIM can now record losses in the same way that SixTrack does: when a primary exceeds the limits of the aperture it is recorded as a loss. Secondly, by placing beam loss monitors (BLMs) within the BDSIM model and recording the simulated dose and energy deposition, it can be directly compared with real BLM data. These results are presented here and compared with SixTrack and BLM data from a typical fill in 2018.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPRB064  
About • paper received ※ 15 May 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPTS094 Dust Analysis from LHC Vacuum System to Identify the Source of Macro-Particle-Beam-Interactions vacuum, operation, proton, dipole 1082
 
  • L.K. Grob, A. Apollonio, C. Charvet, E. Garcia-Tabares Valdivieso, H. Kos, R. Schmidt
    CERN, Geneva, Switzerland
  • C. Neves
    Hochschule Furtwangen, Furtwangen, Germany
 
  Since in 2010 the first sub-millisecond beam losses were observed at varying locations all along the LHC, it is well known that dust can interact with high-intensity proton beams and cause significant beam losses. Initially the sudden localized losses were enigmatic and coined the phrase ’unidentified falling objects’ (UFOs), which is still widely used. These very fast beam losses have resulted in hundreds of premature beam dumps and even magnet quenches since the start of LHC. So far, the only mitigation strategy involved an optimization of dump thresholds and the beneficial conditioning effect which leads to a reduction of the UFO rate over time. To understand the physics involved in these events and to allow an active diminution, it is essential to know the chemical composition and the size of the dust particulates interacting with the protons. The exchange of a dipole magnet offered the unique opportunity to collect dust samples from inside the LHC vacuum system. They were extracted from the various components and analyzed by scanning electron microscopy and energy-dispersive X-ray spectroscopy to reveal size distribution and abundant elements. The results of this investigation will optimize the existing UFO models and the improved understanding of the phenomenon may help to prevent future performance limitations. This is also of relevance for future projects, in particular for the Future Circular Collider (FCC) under study.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPTS094  
About • paper received ※ 15 May 2019       paper accepted ※ 24 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPGW008 Fiber Beam Loss Monitors at MAMI experiment, detector, FPGA, electron 2477
 
  • M. Dehn, P. Achenbach, I. Beltschikow, O. Corell, P. Gülker, W. Lauth, M. Mauch
    IKP, Mainz, Germany
 
  Funding: Work supported by DFG (CRC 1044) and the German federal state of Rhineland-Palatinate
At the 14 MeV stage of the 1508 MeV cascaded racetrack microtron accelerator Mainz Microtron (MAMI) fiber beam loss monitors with multi-anode photomultipliers (ma-PMTs) have been successfully tested. The combination of individual fibers for each recirculation beam pipe with ma-PMTs allows to detect beam losses turn by turn in the order of 10-4 or even lower which cannot be accomplished with the already existing beam diagnostics. This kind of beam loss monitor might be an alternative to ionisation chambers for the new Mainz Energy Recovering Superconducting Accelerator (MESA).
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPGW008  
About • paper received ※ 14 May 2019       paper accepted ※ 21 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPGW063 Fiber-based Cherenkov Beam Loss and Beam Profile Monitor at BEPC II linac, operation, electron, instrumentation 2622
 
  • L. Yu, Y.F. Sui, L. Wang, D.C. Zhu
    IHEP, Beijing, People’s Republic of China
 
  A fiber-based Cherenkov beam loss monitor (CBLM) consisting of large core (400μm), long (50 m) multimode fibers, has been developed as an long-range detection tool for the BEPCII: primarily designed for radiation safety in order to limit the dose outside the shielding of the machine, this monitor also serves as an tool to measure beam profile with the wire sccaner. In this paper, principal of operation, instrumentation and programming of these CBLMs are discussed. Some results of beam loss and beam profile measurement with these CBLMs are also presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPGW063  
About • paper received ※ 15 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPTS050 Multi-Species Electron-Ion Simulations and their Application to the LHC electron, simulation, operation, space-charge 3228
 
  • L. Mether, G. Iadarola, K.L. Poland, G. Rumolo, G. Skripka
    CERN, Meyrin, Switzerland
 
  During operation in 2017 and 2018, the LHC suffered from recurrent beam aborts associated with beam losses in one of its arc cells in correlation with quickly developing transverse coherent oscillations. The events are thought to have been caused by a localised high gas density resulting from the phase transition of a macro-particle that has entered the beam. In order to model the observed coherent effects through the interaction of the beam with the induced pressure bump, novel modelling capabilities have been implemented that allow for the simulation of multiple clouds of different particle species and their interaction with the beam. In this contribution the simulation model and its application are described.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPTS050  
About • paper received ※ 13 May 2019       paper accepted ※ 21 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRB019 Collimation of Target Induced Halo Following MAGIX at MESA target, simulation, experiment, cryomodule 3839
 
  • B. Ledroit
    IKP, Mainz, Germany
  • K. Aulenbacher
    KPH, Mainz, Germany
  • K. Aulenbacher
    GSI, Darmstadt, Germany
  • K. Aulenbacher
    HIM, Mainz, Germany
 
  Funding: Supported by the DFG through GRK 2128
The Mainz Energy-recovering Superconducting Accelerator (MESA) will be an electron accelerator allowing operation in energy-recovery linac (ERL) mode. It provides the opportunity to operate scattering experiments at energies of ~100 MeV with thin gas-targets. The MESA Internal Gas Target Experiment (MAGIX) aims to operate windowless jet targets and different gases up to Xenon to search for possible dark photon interactions, to precisely measure the magnetic proton radius and astrophysical S-factors. Investigations on the impact of the target on beam dynamics and beam losses are required for machine safety and to examine limits to ERL operation. The goal of this work is to understand target induced halo in the different experimental setups, track halo particles through downstream sections to examine beam losses and include a suitable collimation system and shielding into the accelerator layout to protect the machine from direct and indirect damage through beam losses and radiation. The present status of the investigations is presented.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPRB019  
About • paper received ※ 30 April 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRB113 Concept of Beam-Related Machine Protection for the Future Circular Collider machine-protect, extraction, proton, collider 4085
 
  • Y.C. Nie, R. Schmidt, J.A. Uythoven, C. Wiesner, D. Wollmann, M. Zerlauth
    CERN, Meyrin, Switzerland
 
  In the Future Circular Collider (FCC) study, a proton-proton circular collider (FCC-hh) is considered with a stored beam energy 20 times higher than that of the LHC. Any uncontrolled release of such energy could potentially result in severe damage to the accelerator components. Machine protection of the FCC-hh is hence very important and challenging. With a machine-protection strategy similar to the LHC, FCC would require up to three turns to dump the beam synchronously after a failure detection. Due to several possible ultrafast failures, which could lead to significant beam losses in a few turns, it is important to further reduce the reaction time of the machine protection system (MPS) for the FCC. Reducing the detection time of a failure by using faster beam monitors, e.g. diamond detectors, can reduce the time between a beam loss and the beam dump request. Communication delay of the interlock system to the beam dumping system can be reduced by using a more direct signal path. More than one beam-free abort gap will shorten the time required for the synchronization between the abort gap and the extraction kicker. Different failure scenarios are classified according to the speed of the failure onset and the subsequent increase of induced beam losses. The critical failure modes, their potential mitigations and impacts on the design of the MPS are presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPRB113  
About • paper received ※ 14 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPTS052 Beam Loss Suppression by Beam Matching in Klystron klystron, simulation, gun, injection 4218
 
  • S.J. Park, Y.J. Park
    PAL, Pohang, Kyungbuk, Republic of Korea
  • S.C. Cha, D.H. Kim, D.H. Yu
    VITZRONEXTECH, Ansan-si, Gyeonggi-do, Republic of Korea
  • J.H. Hwang
    POSTECH, Pohang, Kyungbuk, Republic of Korea
 
  Funding: The work was supported by the National R&D Program (grant number: 2016R1A6B2A01016828) through the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT in Korea.
High power klystrons usually employ large cathodes to generate high currents which are compressed inside the gun to provide optimum beam sizes at the cavity section. We compress the beam by using electrostatic and magnetostatic focusing fields which are established by gun electrodes and external magnets respectively. The geometry of the gun elecrodes and the external magnet is carefully designed to meet the matching condition which results in scalloping-free beam. We have established a systematic design procedures to achieve the beam matching condition at arbitrary beam sizes. In this article we report on the beam-matching design and simulation results with an example case of the 80-MW S-band klystron in the Pohang Accelerator Laboratory.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPTS052  
About • paper received ※ 15 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)