Paper | Title | Page |
---|---|---|
MOPAB015 | Optimization of a Skew Parametric Resonance Ionization Cooling Channel Using Genetic Algorithm | 111 |
|
||
Funding: This work is supported by Muons Inc. Skew Parametric-resonance Ionization Cooling (Skew PIC) is designed for the final 6D cooling of a high-luminosity muon collider. Tracking of muons in such a channel has been modeled in MADX and matter-dominated simulation tool G4beanline in previous studies. In this work, we developed an optimization code based on Genetic Algorithm (GA). We optimized the cooling channel and increased the acceptance of the channel by using the GA code. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPAB015 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUOCB2 |
JLEIC Ultimate Luminosity With Strong Electron Cooling | |
|
||
Funding: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177 and DE-AC02-06CH11357. The design strategy of an electron-ion collider for reaching high luminosities is presently based on application of strong cooling of the ion beams during collisions. In this paper, we present the main design parameters for JLEIC, a Jefferson Lab proposal of an electron-ion collider, to reach ultimate high luminosity up to 2x1034 /cm2/s. |
||
![]() |
Slides TUOCB2 [4.129 MB] | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPIK035 | Adapting the JLEIC Electron Ring for Ion Acceleration | 3007 |
|
||
Funding: This work was supported by the U.S. Department of Energy, Office of Nuclear Physics, under Contract No. DE-AC02-06CH11357 for ANL and by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177. A key component of the recently proposed alternative design approach for the JLab-EIC (JLEIC) ion complex is to consolidate the electron storage ring (e-ring) as a large booster for the ions*. A preliminary parameter study showed that it is possible to do so for different design options of the e-ring. In this paper we will report on the adaptation of the e-ring lattice to accelerate ions. After studying the beam dynamics at the injection and extraction energies, we will determine the RF requirements for ion acceleration, in particular the number of required accelerating sections and their locations. The effect of this potential lattice change on the electron beam will be investigated. In a second stage, we will focus on the spin manipulation and determine if the spin rotators and flippers available for the electron could be used for the ions. * An Alternative Approach for the JLEIC Ion Accelerator Complex, B. Mustapha et al, Proceedings of NAPAC-2016, October 9-14, Chicago, IL. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPIK035 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPIK038 | Acceleration of Polarized Protons and Deuterons in the Ion Collider Ring of JLEIC | 3014 |
|
||
Funding: Authored by Jefferson Science Associates, LLC under U.S. DOE Contracts No. DE-AC05-06OR23177 and DE-AC02-06CH11357. The figure-8-shaped ion collider ring of Jefferson Lab Electron-Ion Collider (JLEIC) is transparent to the spin. It allows one to preserve proton and deuteron polarizations using weak stabilizing solenoids when accelerating the beam up to 100 GeV/c. When the stabilizing solenoids are introduced into the collider's lattice, the particle spins precess about a spin field, which consists of the field induced by the stabilizing solenoids and the zero-integer spin resonance strength. During acceleration of the beam, the induced spin field is maintained constant while the resonance strength experiences significant changes in the regions of interference peaks. The beam polarization depends on the field ramp rate of the arc magnets. Its component along the spin field is preserved if acceleration is adiabatic. We present the results of our theoretical analysis and numerical modeling of the spin dynamics during acceleration of protons and deuterons in the JLEIC ion collider ring. We demonstrate high stabil-ity of the deuteron polarization in figure-8 accelerators. We analyze a change in the beam polarization when crossing the transition energy. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPIK038 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPIK041 | Update on the JLEIC Electron Collider Ring Design | 3018 |
|
||
Funding: Authored by Jefferson Science Associates, LLC under US DOE Contracts No. DE-AC05-06OR23177 and DE-AC02-06CH11357. Work supported by the US DOE Contract DE-AC02-76SF00515. We present an update on the lattice design of the electron ring of the Jefferson Lab Electron-Ion Collider (JLEIC). The electron and ion collider rings feature a unique figure-8 layout providing optimal conditions for preservation of beam polarization. The rings include two arcs and two intersecting long straight sections containing a low-beta interaction region (IR) with special optics for detector polarimetry, electron beam spin rotator sections, ion beam cooling sections, and RF-cavity sections. Recent development of the electron ring lattice has been focused on minimizing the beam emittance while providing an efficient non-linear chromaticity correction and large dynamic aperture. We describe and compare three lattice designs, from which we determine the best option. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPIK041 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPIK114 | Study of Electron Polarization Dynamics in the JLEIC at JLab | 3218 |
|
||
Funding: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177 and DE-AC02-06CH11357. The design of an electron polarization scheme in the Jefferson Lab Electron-Ion Collider (JLEIC) aims to attain a high longitudinal electron polarization (over 70%) at collision points as required by the nuclear physics program. Comprehensive strategies for achieving this goal have been considered and developed including injection of highly polarized electrons from CEBAF, mechanisms for manipulation and preservation of the polarization in the JLEIC collider ring and measurement of the electron polarization. In particular, maintaining a sufficiently long polarization lifetime is crucial for accumulation of adequate experimental statistics. The chosen electron polarization configuration, based on the unique figure-8 geometry of the ring, removes the electron spin-tune energy dependence. This significantly simplifies the control of the electron polarization and suppresses the synchrotron sideband resonances. This paper reports recent studies and simulations of the electron polarization dynamics in the JLEIC electron collider ring. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPIK114 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPIK116 | Aberration Compensation in a Skew Parametric-Resonance Ionization Cooling Channel | 3221 |
|
||
Funding: This work was supported in part by U.S. DOE STTR Grant DE-SC0005589. Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177. Skew Parametric-resonance Ionization Cooling (Skew PIC) represents a novel method for focusing of highly divergent particle beams, as in the final 6D cooling stage of a high-luminosity muon collider. In the muon collider concept, the resultant equilibrium transverse emittances from cooling with Skew PIC are an order of magnitude smaller than in conventional ionization cooling. The concept makes use of coupling of the transverse dynamic behavior, and the linear dynamics are well-behaved with good agreement between analytic solutions and simulation results. Compared to the uncoupled system, coupling of the transverse dynamic behavior purports to reduce the number of multipoles required for aberration compensation while also avoiding unwanted resonances. Aberration compensation is more complicated in the coupled case, especially in the high-luminosity muon collider application where equilibrium angular spreads in the cooling channel are on the order of 200 mrad. We present recent progress on aberration compensation for control of highly divergent muon beams in the coupled correlated optics channel, and a simple cooling model to test the transverse acceptance of the channel. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPIK116 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |