

JLEIC Ultimate Luminosity Performance with Strong Electron Cooling

IPAC2017, Copenhagen, Denmark May 14-19, 2017

U.S. DEPARTMENT OF ENERGY Office of Science

JLEIC Ultimate Luminosity Performance with Strong Electron Cooling

ENERGY Office of Science

JLEIC Collaboration

S. Benson, A. Bogacz, P. Brindza, A. Camsonne, E. Daly, Ya. Derbenev, M. Diefenthaler, D. Douglas, R. Ent, Y. Furletova, D. Gaskell, R. Geng, J. Grames, J. Guo, F. Hanna, L. Harwood, T. Hiatt, A. Hutton, K. Jordan, A. Kimber, G. Krafft, R. Li, F. Lin, F. Marhauser, R. McKeown, T. Michalski, V. Morozov, E. Nissen, H. Park, F. Pilat, M. Poelker, T. Powers, R. Rimmer, Y. Roblin, T. Satogata, M. Spata, R. Suleiman, A. Sy, C. Tennant, H. Wang, S. Wang, G. Wei, C. Weiss, R. Yoshida, H. Zhang, Y. Zhang – Jefferson Lab, VA

Y. Cai, Y. Nosochkov, M. Sullivan, C. Tsai, M. Wang - SLAC, CA D. Barber - DESY, Germany

S. Manikonda, B. Mustapha, U. Wienands - Argonne National Laboratory, IL

P. Ostroumov, A. Plastun , R. York - Michigan State University, MI

S. Abeyratne, B. Erdelyi - Northern Illinois University, IL, Z. Zhao - Duke University, NC

J. Delayen, C. Hyde, S. De Silva, S. Sosa, B. Terzic - Old Dominion University, VA

J. Gerity, T. Mann, P. McIntyre, N. Pogue, A. Sattarov - Texas A&M University, TX

P. Nadel-Turonski, Stony Brook University, NY, V. Dudnikov, R. Johnson - Muons, Inc., IL

D. Bruhwiler - Radiasoft, CO I. Pogorelov, G. Bell, J. Cary - Tech-X Corp., CO

A. Kondratenko, M. Kondratenko - Sci. & Tech. Laboratory Zaryad, Russia

Yu. Filatov - Moscow Institute of Physics and Technology, Russia

JLEIG

ENERGY Office of Science

Y. Huang, X. Ma, L. Mao, Y. Yuan, H. Zhao, H.W. Zhao - Institute of Modern Physics, China

I have borrowed slides/materials from these colleagues for preparing my presentation. I want to thank them.

IPAC2017, May 14-19, 2017

Introduction: JLEIC In the QCD Frontier

- The international nuclear science community has long envisioned a high luminosity polarized electron-ion collider for the future QCD frontier
- JLEIC is a Jefferson Lab proposed Electron-Ion Collider for responding to this science need
- BNL has proposed **eRHIC** for the same science
- JLEIC is designed for delivering high performance including high luminosity, high polarization and full detector acceptance
- The JLEIC design concept has been stable over the last 10 years
- The implementation has been continuously updated and optimized to enhance performance, mitigate technical risk and reduce costs

Science

EIC White Paper 2015

> **Electron Ion Collider:** The Next QCD Frontier

> > Understanding the glue that binds us all

EIC Science in Media

EIC in US NSAC Long Range Plan

- Nuclear Science Advisory Committee (NSAC) is commissioned by US Department of Energy and National Science Foundation
- NSAC provides advice on assessment and prioritization of the national program for basic nuclear science research.
- Every 6 to 8 years, NSAC produces a Long Range Plan (LRP), with 3 to 5 recommendations, → a roadmap for nuclear science facilities for the next 10 years
- LRP 1979, 1983, 1989, 1996, 2002, 20

NSAC LRP 2007

Just completed ! Science has begun

- Completion of the 12 GeV CEBAF Upgrade at Jefferson Lab.
- Construction of the Facility for Rare isotope Beams, FRIB

EIC in US NSAC Long Range Plan

- Nuclear Science Advisory Committee (NSAC) is commissioned by US Department of Energy and National Science Foundation
- NSAC provides advice on assessment and prioritization of the national program for basic nuclear science research.
- Every 6 to 8 years, NSAC produces a Long Range Plan (LRP), with 3 to 5 recommendations, → a roadmap for nuclear science facilities for the next 10 years
- LRP 1979, 1983, 1989, 1996, 2002, 20

NSAC LRP 2007

Just completed ! Science has begun

- Completion of the 12 GeV CEBAF Upgrade at Jefferson Lab.
- Construction of the Facility for Rare isotope Beams, FRIB

Under construction

EIC in US NSAC Long Range Plan

- Nuclear Science Advisory Committee (NSAC) is commissioned by US Department of Energy and National Science Foundation
- NSAC provides advice on assessment and prioritization of the national program for basic nuclear science research.
- Every 6 to 8 years, NSAC produces a Long Range Plan (LRP), with 3 to 5 recommendations, → a roadmap for nuclear science facilities for the next 10 years
- LRP 1979, 1983, 1989, 1996, 2002, 20

NSAC LRP 2007

NSAC LRP 2015

Just completed ! Science has begun

- Completion of the 12 GeV CEBAF Upgrade at Jefferson Lab.
- Construction of the Facility for Rare isotope Beams, FRIB

Under construction

• A high-energy high-luminosity polarized Electron-lon Collider for new facility construction following the completion of FRIB

• Last milestone of the long process for approval of an EIC in US: **National Academy of Science Review** (presently *in progress, report expected at the end of 2017)*

((http://sites.nationalacademies.org/BPA/BPA_177106)

IPAC2017, May 14-19, 2017

JLEIC Layout and On JLab Site Map

JLEIC High Luminosity Design Concept

- Conventional approach for hadron colliders
 - Few colliding bunches \rightarrow low bunch frequency
 - High bunch intensity \rightarrow long bunch & large β^*
- JLEIC takes a new approach: <u>high bunch</u> <u>repetition rate+short bunch colliding beams</u>

$$L = f \frac{n_1 n_2}{4\pi \sigma^*_{x} \sigma^*_{y}} \sim f \frac{n_1 n_2}{\varepsilon \beta^*_{y}}$$

- A traditional approach for lepton colliders (KEK-B reached > 2x10³⁴ /cm²/s)
- JLEIC advantages
 - Based on CEBAF, its beam <u>already</u> up to 1.5 GHz
 - <u>New green field</u> ion complex can be designed to deliver high bunch repetition rate

req. (MHz)	intensity (10 ¹⁰)	length (cm)	р _у (ст)
9.4	20	-	0.9
8.2	7.3	16	18
476	1	1	1.2
158 - 458	6.4 – 2.1	~0.6	0.59
	req. (MHz) 9.4 8.2 476 158 - 458	req. (MHz) intensity (10 ¹⁰) 9.4 20 8.2 7.3 476 1 158 - 458 6.4 - 2.1 Science Science	req. (MHz) intensity (10 ¹⁰) length (cm) 9.4 20 - 8.2 7.3 16 476 1 1 158 - 458 6.4 - 2.1 ~0.6 Science Control of the second s

Role of cooling of ion beams

- Damping is critical for beam formation and emittance preservation
- Electron has a natural damping -SR
- No SR for protons/ions in this medium energy range

9

• JLEIC relies on *electron cooling* for providing a damping mechanism

19, 2017

Jefferson Lab

JLEIC Baseline *e-p* **Parameters**

CM energy	GeV	21.9 (low)		44.7 (medium)		63.3 (high)	
		р	е	р	е	р	е
Beam energy	GeV	40	3	100	5	100	10
Collision frequency	MHz	476		476		476/4=119	
Particles per bunch	10 ¹⁰	0.98	3.7	0.98	3.7	3.9	3.7
Beam current	А	0.75	2.8	0.75	2.8	0.75	0.71
Polarization	%	80	80	80	80	80	75
Bunch length, RMS	cm	3	1	1	1	2.2	1
Norm. emitt., horiz./vert.	μm	0.3/0.3	24/24	0.5/0.1	54/10.8	0.9/0.18	432/86.4
Horizontal & vertical β*	cm	8/8	13.5/13.5	6/1.2	5.1/1	10.5/2.1	4/0.8
Vert. beam-beam param.		0.015	0.092	0.015	0.068	0.008	0.034
Laslett tune-shift		0.06	7x10 ⁻⁴	0.055	6x10-4	0.056	7x10 ⁻⁵
Detector space, up/down	m	3.6/7	3.2/3	3.6/7	3.2/3	3.6/7	3.2/3
Hourglass(HG) reduction		1		0.87		0.75	
Luminosity/IP, w/HG, 1033	cm ⁻² s ⁻¹	2.5		21.4		5.9	

Similar high performance can be achieved for electron-ion (e-A) collisions

JLEIG

A

ENERGY Office of Science

6

IPAC2017, May 14-19, 2017

JLEIC e-p Luminosity & Upgrade Potential

IPAC2017, May 14-19, 2017

JLEIC e-p Luminosity & Upgrade Potential

IPAC2017, May 14-19, 2017

Multi-Step Cooling for High Luminosity

IPAC2017, May 14-19, 2017

Cooling of JLEIC proton/ion beam

- Achieving very small emittance (a factor of 10 reduction)
- Achieving very short bunch length ~1 cm (with strong SRF)
- Suppressing IBS induced emittance degradation

JLEIC: conventional electron cooling

Well established technology (in the low energy DC regime)

• Multi-step scheme

Science

• high cooling efficiency at low energy and small emittance

Cool when emittance is small (after pre-cool at low energy)

Ring	Cooler	Functions	lon energy (GeV)	Electron energy (MeV)	
Booster		Accumulation of positive ions	0.11~0.19 (injection)	0.062~0.1	
	DC	Pre-cooling for emittance reduction ~2		1.1	
Collider	ERL	Maintain emittance during stacking		7.9 (injection)	4.3
		Maintain emittance during collision	Up to 100	Up to 55	

2 MeV DC Cooler for COSY@IKP, Jülich

Jefferson Lab

High Energy Magnetized Electron Cooler Based on ERL and Circulator Ring

ERL-Circulator Cooler R&D

Figure-8 Ring[®] for High Polarization

IPAC2017, May 14-19, 2017

- Electrons & protons/light ions are injected polarized from sources
- Rings are designed to preserve the polarization
- JLEIC adopted a figure-8 topology for ion rings
 ← enabled by a green field collider ring design
- A brilliant invention of *Dr. Yaroslav Derbenev*
- Spin precessions in the left & right parts of a figure-8 ring are exactly cancelled → net spin precession is zero
 → spin tune is zero
- Does not cross spin resonance during energy ramp
- Spin can be controlled and stabilized by compact spin rotators (e.g., moving spin tune away from 0)
- No need of Siberian Snakes

ENERGY Office of Science

- The *only practical way* to accelerate/store polarized deuterons in medium energy range (gyromagnetic ratio *g*-2 too small)
- The electron ring follows the figure-8 foot-print of the ion ring
- Figure-8 helps the electron polarization under spin flip

Spin precessions in left and right ring are cancelled → Spin turn is zero (energy independent)

- Spin precession/spin tune is energy dependent
- Cross many spin resonances
 during acceleration
- Siberian Snake may help, but still difficult

Jenierson LaD

JLEIC Achieved Design Goals

Design goals consistent with the EIC White Paper requirements

Energy

- Full coverage of CM energy from **15** to **65** GeV
- Electrons 3-10 GeV, protons up to 100 GeV, ions up to 40 GeV/u

lon species

- Polarized light ions: **p**, **d**, ³He, and possibly Li
- Un-polarized light to heavy ions up to A above 200 (Au, Pb)

Support 2 detectors

• Full acceptance capability is critical for the primary detector

Luminosity

- 10³³ to 10³⁴ /cm²s per IP in a *broad* CM energy range,
- Highest luminosity at CM energy around 45 GeV

Polarization

ERGY Science

- At IP: longitudinal for both beams, transverse for ions only
- All polarizations >70%

Upgradable to higher CM energy/luminosity possible

● 14 GeV electron, 400 GeV proton, and 160 GeV/u ion → ~150 GeV CM

IPAC2017, May 14-19, 2017

A New Ion Complex for JLEIC

JLEIC Collider Rings

Electron ring w/ major machine components

• 12GeV CEBAF as a full energy (polarized) injector

- Capability of top-off injection or continuous injection
- Reuse PEP-II equipment's (RF, vacuum chamber, and possibly magnets)

- Two rings have same footprint, **stack** *vertically*
- Having a *horizontal crab crossing* at IPs
- Supports two IPs and fit to the JLab site
- Beamline/optics design completed (including) low- β insertion, chromatic compensation, etc.)

• *Ion magnet fields* determines CM energy range

		р	е	
Circumference	m	2154		
Crossing angle	deg	81.7		
Lattice		FODO	FODO	
Dipole & quad	m	8 & 0.8 5.4 & 0.4		
Cell length	m	22.8	15.2	
Max. dipole field	Т	3	~1.5	
SR power density	kW/m	10		
Transition γ_{tr}		12.5	21.6	

19

Jefferson Lab

Super-ferric magnets (3 T)

Super-Ferric Magnets for Ion Rings

- Technology developed long ago (~SSC era)
- Adopted for FAIR SIS100 ring & NICA (1.8 T)
- **Advantages**
 - Higher fields (than warm magnets)
 - Fast ramp rate
 - Cost efficient
- JLEIC adopted it for booster/collider ring
 - Up to 3 T
 - Fast ramp (1 T/s) for booster ring magnets

- IR designed to support *full-acceptance* detection *← unprecedented requirement*
- Satisfy geometric match (elements) and **beam dynamics** (chromatic compensation)
- Crab crossing: large (50 mrad), avoiding parasitic collisions, optimizing particle detections
- GEANT4 detector model developed, simulations in progress

Science

IPAC2017, May 14-19, 2017

Office of

IPAC2017, May 14-19, 2017

Development of RF cavities for JLEIC

proto-typing and testing

IPAC2017, May 14-19, 2017

Development of RF cavities for JLEIC

Nonlinear Beam Dynamics

Chromaticity issues

- Beam smear at IP
- Large tune footprint
- Limiting dynamic aperture
- High contributions from
 - low- β insertion with a large detector space
 - Strong focusing lattice for low emittance in e-ring
- Compensation: "–/" sext pairs in arcs

• Ion collider ring: dynamic aperture $15\sigma_x \times 20\sigma_y$ @100 GeV (with magnet multipole errors)

JLEIG

Electron collider ring: work in progress

Office of

ENERGY Science

JLEIC *Prioritized* **Pre-Project R&D Topics**

High priority

Prioritization was endorsed by a DOE EIC R&D Community Review Panel (11/2016)

- Strong hadron cooling
- High current single-pass ERL for hadron cooling
- A high current magnetized electron injector
- Magnet design/prototyping for high acceptance IP
- An ERL-CC test facility using existing infrastructure (LERF) with magnetized beam & fast kicker
- Crab cavity operation in a hadron ring
- Complete and test of a full scale super-ferric magnet
- Gear change synchronization & impact on beam dynamics
- High power fast kicker for (2ns bunch spacing) feedback

High-medium priority

- Electron cooling simulations
- Fast kicker prototype for multi turn cooler
- Spin tracking in ion and electron rings
- Fast kicker proto-type/test for circulator cooler
- IR design and detector integration
- Super-ferric 3T fast ramping short dipole
- SRF cavity systems including crab cavity
- Polarized ion sources (D⁻, ³He⁺⁺)
- Operating CEBAF in the JLEIC injection mode

Medium priority

- Nonlinear beam dynamics in collider rings
- Space charge in ion complex, beam formation
- Instability and feedback systems
- Ion & electron ring background & vacuum
- Bunched beam cooling experiment
- Fast kicker test with beam

CIA JLEIG

IPAC2017, May 14-19, 2017

Jefferson Lab

JLEIC Working Groups and Collaborations

Ion injector complex	(Todd Satogata)	WEPIK035	WEPVA040	WEPIK081	
Ion linac	(Brahim Mustapha, <mark>ANL</mark>)				
 Ion and electron polarization 	(Fanglei Lin, Vasiliy Morozov) (Kondratenko group, <mark>Zaryad, Russia</mark>)				
 Electron cooler design 	(Steve Benson)	MOPIK116	WEPIK040	WEPIK042	
 Cooler magnetized electron source 	(Riad Suleiman)				
 Simulations / Instability 	(Yves Roblin / Rui Li)	WEPIK080	WEPIK082	WEPIK086	
IR / non-linear studies	(Vasiliy Morozov, Yuri Nosochkov, SLAC WEPIK041 WEPIK11				
 Crab crossing / Crab cavity 	(Vasiliy Morozov / Jean Delayen, ODU) WEPIK043 WEPIK04				
• MDI / detector / Backgrounds	(Mike Sullivan, SLAC / Rik Yoshida) WEPIK08				
 SRF / Fast kicker 	(Bob Rimmer)		MOPVA136	WEPIK037	
 Engineering 	(Tim Michalski)		tore in this		
 Super-ferric magnets 	(Peter McIntyre, Texas A&N	P05 I)		IFAC	
Names for leaders/coordinators of working groups or collaborationsMore working group/collaborations				tions	
Office of Science	IPAC2017, May 14-19, 2017		31 Jef	ferson Lab	

Summary

- JLEIC design is driven by and optimized for EIC physics requirements
- JLEIC delivers high luminosity over a broad CM energy range, up to above 2x10³⁴ /cm²/s, using a design concept based on high bunch repetition colliding beams and strong electron cooling
- JLEIC delivers high polarization based on a revolutionary concept of figure-8 ring
- JLEIC IR design supports full acceptance detectors critical to its science program
- JLEIC design is stable and mature, the technical risk and required R&D are modest
- The JLEIC team/collaboration is presently engaged in pre-project accelerator R&D, aiming for delivering a comprehensive pre-CDR in 2 years

Science

 Five biannual .II FIC collaboration meetings

JLEI

Next one: Oct. 2017

32

 We welcome our US and international colleagues

JLEIC-Related Posters at IPAC2017

MOPIK116	Toroidal Merger Simulations for an ERL Bunched Beam Electron Cooler Ring	(Presenter:	A. Sy)
MOPVA134	HOM Analysis of 952.6MHz Multi-Cell RF-Dipole Crabbing Cavity for JLEIC	(Presenter:	S. Sliva)
WEPIK035	Adapting the JLEIC Electron Ring for Ion Acceleration	(Presenter:	B. Mustapha)
WEPIK037	SRF Systems for the Jefferson Lab <i>EIC</i>	(Presenter:	F. Marhauser)
WEPIK038	Acceleration of Polarized Protons & Deuterons in Ion Collider Ring of JLEIC	(Presenter:	V. Morozov)
WEPIK040	Beam Reconditioning	(Presenter:	Y. Zhang)
WEPIK041	Update on the JLEIC Electron Collider Ring Design	(Presenter:	Y. Nosochkov
WEPIK042	JLEIC Luminosity Performance Optimization w/ Cooling During Collision	(Presenter:	Y. Zhang)
WEPIK043	Modeling Local Crabbing Dynamics in the JLEIC Ion Collider Ring	(Presenter:	S. Sosa)
WEPIK044	Impact of Crab Cavitiy Multipoles on JLEIC Ion Ring Dynamic Aperture	(Presenter:	S. Sosa)
WEPIK113	Entrance and Exit CSR Impedance for Non-ultrarelativistic Beams	(Presenter:	R. Li)
WEPIK114	Study of electron polarization dynamics in the JLEIC at JLab	(Presenter:	F. Lin)
WEPVA040	Design of Imaginary Transition Gamma Booster Synchrotron for JLEIC	(Presenter:	A Bogacz)
THPAB080	Estimations of Coherent Instabilities for JLEIC	(Presenter:	R. Li)
THPAB081	The Effects of Space-Charge on the Dynamics of the Ion Booster in JLEIC	(Presenter:	E. Nissen)
THPAB082	The Beam-Beam Effect and Its Consequences for the Modeling of JLEIC	(Presenter:	E. Nissen)
THPAB084	Integration of the Full-Acceptance Detector Into the JLEIC	(Presenter:	G. Wei)
THPAB086	Long-Term Simulations of Beam-Beam Dynamics on GPUs	(Presenter:	B. Terzic)
U.S. DEPARTMENT OF	Office of Science IPAC2017, May 14-19, 2017	33 、	lefferson Lab

Jefferson Lab

EIC User Group: A Growing International Community

EIC User Group: A Growing International Community

